cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A053418 Number of unlabeled directed graphs with n arcs and no isolated vertices.

Original entry on oeis.org

1, 1, 5, 17, 80, 365, 1981, 11222, 69511, 455663, 3169244, 23170347, 177513359, 1418920570, 11798710013, 101778754655, 908722427531, 8380602471646, 79692654473866, 780142956502644, 7851084073063731, 81120767066417308
Offset: 0

Views

Author

Vladeta Jovovic, Jan 10 2000

Keywords

Crossrefs

The labeled version is A121252.
Column sums of A350908.
Cf. A000273, A000664, A053454, A053598 (by # of nodes).

Formula

Euler transform of A053454. - Andrew Howroyd, Jan 28 2022

Extensions

Edited and extended by Max Alekseyev, Sep 18 2009

A053598 Number of n-node unlabeled digraphs without isolated nodes.

Original entry on oeis.org

1, 0, 2, 13, 202, 9390, 1531336, 880492496, 1792477159408, 13026163465206704, 341247403996148180800, 32522568124623933138617088, 11366712907916015518547782806784, 14669074325967499043636521641422216704, 70315641946149306808455637518883828774996992
Offset: 0

Views

Author

Vladeta Jovovic, Apr 10 2000

Keywords

Comments

Equals first differences of A000273.

Crossrefs

Cf. A000273, A002494, A053418 (by # arcs). Row sums of A350908.

Programs

  • Maple
    b:= proc(n, i, l) `if`(n=0 or i=1, 1/n!*2^((p-> add(p[j]-1+add(
          igcd(p[k], p[j]), k=1..j-1)*2, j=1..nops(p)))([l[], 1$n])),
          add(b(n-i*j, i-1, [l[], i$j])/j!/i^j, j=0..n/i))
        end:
    a:= n-> b(n$2, [])-`if`(n=0, 0, b(n-1$2, [])):
    seq(a(n), n=0..16);  # Alois P. Heinz, Sep 04 2019
  • Mathematica
    Needs["Combinatorica`"];
    nn=15;s=Sum[NumberOfDirectedGraphs[n]x^n,{n,0,nn}];CoefficientList[Series[s (1-x),{x,0,nn}],x]  (* Geoffrey Critzer, Oct 09 2012 *)
    Join[{1}, Table[GraphPolynomial[n, x, Directed] /. x -> 1, {n, 0, 15}] // Differences] (* Jean-François Alcover, Feb 04 2015 *)
  • Python
    from itertools import combinations
    from math import prod, factorial, gcd
    from fractions import Fraction
    from sympy.utilities.iterables import partitions
    def A053598(n): return int(sum(Fraction(1<Chai Wah Wu, Jul 05 2024

Formula

O.g.f.: A(x)*(1-x) where A(x) is o.g.f. for A000273. - Geoffrey Critzer, Oct 09 2012

A054547 Triangular array giving number of labeled digraphs on n unisolated nodes and k=0..n*(n-1) arcs.

Original entry on oeis.org

0, 0, 2, 1, 0, 0, 12, 20, 15, 6, 1, 0, 0, 12, 140, 435, 768, 920, 792, 495, 220, 66, 12, 1, 0, 0, 0, 240, 2520, 11604, 34150, 73560, 123495, 166860, 184426, 167900, 125965, 77520, 38760, 15504, 4845, 1140, 190, 20, 1
Offset: 1

Views

Author

Vladeta Jovovic, Apr 09 2000

Keywords

Examples

			Triangle T(n,k) begins:
  [0],
  [0,2,1],
  [0,0,12,20,15,6,1],
  [0,0,12,140,435,768,920,792,495,220,66,12,1],
  ...
		

Crossrefs

Row sums are A054545.
Column sums are A121252.
The unlabeled version is A350908.
Cf. A054548 (graphs), A062735, A123554.

Programs

  • PARI
    row(n) = {Vecrev(sum(i=0, n, (-1)^(n-i)*binomial(n,i)*(1 + 'y)^(i*(i-1))), n*(n-1)+1)}
    { for(n=1, 6, print(row(n))) } \\ Andrew Howroyd, Jan 28 2022

Formula

T(n, k) = Sum_{i=0..n} (-1)^(n-i)*binomial(n, i)*binomial(i*(i-1), k).
Showing 1-3 of 3 results.