cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-5 of 5 results.

A054576 Largest proper factor of the largest proper factor of n.

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 3, 1, 1, 1, 4, 1, 3, 1, 5, 1, 1, 1, 6, 1, 1, 3, 7, 1, 5, 1, 8, 1, 1, 1, 9, 1, 1, 1, 10, 1, 7, 1, 11, 5, 1, 1, 12, 1, 5, 1, 13, 1, 9, 1, 14, 1, 1, 1, 15, 1, 1, 7, 16, 1, 11, 1, 17, 1, 7, 1, 18, 1, 1, 5, 19, 1, 13, 1, 20, 9, 1, 1, 21, 1, 1, 1, 22, 1, 15, 1, 23, 1, 1, 1, 24
Offset: 1

Views

Author

Henry Bottomley, Apr 11 2000

Keywords

Comments

Here a "proper factor of n" means 1 if n = 1, and otherwise any d that divides n with 1 <= d < n. - N. J. A. Sloane, Dec 26 2022

Examples

			The largest proper factor of 8 is 4, the largest proper factor of 4 is 2, so a(8) = 2. - _N. J. A. Sloane_, Dec 26 2022
		

Crossrefs

Programs

Formula

a(n) = A053598(A053598(n))
a(n) = A032742(A032742(n)); A117357(n) = A020639(a(n)); A117358(n) = A032742(a(n)) = a(n) / A117357(n); a(A037143(n)) = 1, a(A033942(n)) > 1. - Reinhard Zumkeller, Mar 10 2006

Extensions

Deleted an incorrect comment and link. - N. J. A. Sloane, Dec 26 2022

A053418 Number of unlabeled directed graphs with n arcs and no isolated vertices.

Original entry on oeis.org

1, 1, 5, 17, 80, 365, 1981, 11222, 69511, 455663, 3169244, 23170347, 177513359, 1418920570, 11798710013, 101778754655, 908722427531, 8380602471646, 79692654473866, 780142956502644, 7851084073063731, 81120767066417308
Offset: 0

Views

Author

Vladeta Jovovic, Jan 10 2000

Keywords

Crossrefs

The labeled version is A121252.
Column sums of A350908.
Cf. A000273, A000664, A053454, A053598 (by # of nodes).

Formula

Euler transform of A053454. - Andrew Howroyd, Jan 28 2022

Extensions

Edited and extended by Max Alekseyev, Sep 18 2009

A350908 Triangle read by rows: T(n,k) is the number of digraphs on n unlabeled unisolated nodes with k arcs, k = 0..n*(n-1).

Original entry on oeis.org

0, 0, 1, 1, 0, 0, 3, 4, 4, 1, 1, 0, 0, 1, 9, 23, 37, 47, 38, 27, 13, 5, 1, 1, 0, 0, 0, 3, 34, 116, 331, 669, 1128, 1477, 1665, 1489, 1154, 707, 379, 154, 61, 16, 5, 1, 1, 0, 0, 0, 1, 15, 134, 664, 2535, 7796, 19719, 42193, 77324, 122960, 170317, 206983, 220768
Offset: 1

Views

Author

Andrew Howroyd, Jan 28 2022

Keywords

Examples

			Triangle begins:
  [1] 0;
  [2] 0, 1, 1;
  [3] 0, 0, 3, 4,  4,  1,  1;
  [4] 0, 0, 1, 9, 23, 37, 47, 38, 27, 13, 5, 1, 1;
  ...
		

Crossrefs

Row sums are A053598.
Column sums are A053418.
The labeled version is A054547.

Programs

  • PARI
    \\ See A054733 for G.
    row(n)={Vecrev(G(n,y)-G(n-1,y), n*(n-1)+1)}
    { for(n=1, 6, print(row(n))) }

A361588 Triangle read by rows: T(n,k) is the number of digraphs on n unlabeled nodes with k strongly connected components and without isolated nodes.

Original entry on oeis.org

1, 0, 0, 0, 1, 1, 0, 5, 4, 4, 0, 83, 57, 37, 25, 0, 5048, 2411, 1110, 550, 271, 0, 1047008, 325015, 101467, 37140, 15024, 5682, 0, 705422362, 136887749, 27765860, 7139149, 2259378, 780314, 237684, 0, 1580348371788, 183852357683, 23088181536, 3923330808, 907186816, 258971872, 78716548, 20042357
Offset: 0

Views

Author

Andrew Howroyd, Mar 16 2023

Keywords

Examples

			Triangle begins:
  1;
  0,       0;
  0,       1,      1;
  0,       5,      4,      4;
  0,      83,     57,     37,    25;
  0,    5048,   2411,   1110,   550,   271;
  0, 1047008, 325015, 101467, 37140, 15024, 5682;
  ...
		

Crossrefs

Column k=1 is A035512.
Main diagonal is A361589.
Row sums are A053598.

Programs

  • PARI
    \\ See PARI link in A350794 for program code.
    { my(A=A361588triang(6)); for(n=1, #A, print(A[n])) }

Formula

T(n,k) = A361582(n,k) - A361582(n-1,k-1).

A217654 Triangular array read by rows. T(n,k) is the number of unlabeled directed graphs of n nodes that have exactly k isolated nodes.

Original entry on oeis.org

1, 0, 1, 2, 0, 1, 13, 2, 0, 1, 202, 13, 2, 0, 1, 9390, 202, 13, 2, 0, 1, 1531336, 9390, 202, 13, 2, 0, 1, 880492496, 1531336, 9390, 202, 13, 2, 0, 1, 1792477159408, 880492496, 1531336, 9390, 202, 13, 2, 0, 1, 13026163465206704, 1792477159408, 880492496, 1531336, 9390, 202, 13, 2, 0, 1
Offset: 0

Views

Author

Geoffrey Critzer, Oct 09 2012

Keywords

Comments

Row sums give A000273.
Column k = 0 is A053598.

Examples

			Triangle T(n,k) begins:
        1;
        0,    1;
        2,    0,   1;
       13,    2,   0,  1;
      202,   13,   2,  0, 1;
     9390,  202,  13,  2, 0, 1;
  1531336, 9390, 202, 13, 2, 0, 1;
  ...
		

Crossrefs

Programs

  • Maple
    b:= proc(n, i, l) `if`(n=0 or i=1, 1/n!*2^((p-> add(p[j]-1+add(
          igcd(p[k], p[j]), k=1..j-1)*2, j=1..nops(p)))([l[], 1$n])),
          add(b(n-i*j, i-1, [l[], i$j])/j!/i^j, j=0..n/i))
        end:
    g:= proc(n) option remember; b(n$2, []) end:
    T:= (n, k)-> g(n-k)-`if`(kAlois P. Heinz, Sep 04 2019
  • Mathematica
    Needs["Combinatorica`"]; f[list_]:=Insert[Select[list,#>0&],0,-2]; nn=10; s=Sum[NumberOfDirectedGraphs[n]x^n, {n,0,nn}]; Drop[Flatten[Map[f, CoefficientList[Series[s (1-x)/(1-y x), {x,0,nn}], {x,y}]]], 1]
    (* Second program: *)
    b[n_, i_, l_List] := If[n==0 || i==1, 1/n!*2^(Function[p, Sum[p[[j]] - 1 + Sum[GCD[p[[k]], p[[j]]], {k, 1, j - 1}]*2, {j, 1, Length[p]}]][Join[l, Array[1&, n]]]), Sum[b[n - i*j, i - 1, Join[l, Array[i&, j]]]/j!/i^j, {j, 0, n/i}]];
    g[n_] := g[n] = b[n, n, {}];
    T[n_, k_] := g[n - k] - If[k < n, g[n - k - 1], 0];
    Table[Table[T[n, k], {k, 0, n}], {n, 0, 10}] // Flatten (* Jean-François Alcover, Dec 07 2019, after Alois P. Heinz *)

Formula

O.g.f.: A(x)*(1-x)/(1-y*x) where A(x) is o.g.f. for A000273.
Showing 1-5 of 5 results.