cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A054547 Triangular array giving number of labeled digraphs on n unisolated nodes and k=0..n*(n-1) arcs.

Original entry on oeis.org

0, 0, 2, 1, 0, 0, 12, 20, 15, 6, 1, 0, 0, 12, 140, 435, 768, 920, 792, 495, 220, 66, 12, 1, 0, 0, 0, 240, 2520, 11604, 34150, 73560, 123495, 166860, 184426, 167900, 125965, 77520, 38760, 15504, 4845, 1140, 190, 20, 1
Offset: 1

Views

Author

Vladeta Jovovic, Apr 09 2000

Keywords

Examples

			Triangle T(n,k) begins:
  [0],
  [0,2,1],
  [0,0,12,20,15,6,1],
  [0,0,12,140,435,768,920,792,495,220,66,12,1],
  ...
		

Crossrefs

Row sums are A054545.
Column sums are A121252.
The unlabeled version is A350908.
Cf. A054548 (graphs), A062735, A123554.

Programs

  • PARI
    row(n) = {Vecrev(sum(i=0, n, (-1)^(n-i)*binomial(n,i)*(1 + 'y)^(i*(i-1))), n*(n-1)+1)}
    { for(n=1, 6, print(row(n))) } \\ Andrew Howroyd, Jan 28 2022

Formula

T(n, k) = Sum_{i=0..n} (-1)^(n-i)*binomial(n, i)*binomial(i*(i-1), k).

A121252 Number of labeled digraphs without isolated vertices and with n arcs.

Original entry on oeis.org

1, 2, 25, 520, 15150, 567540, 25986334, 1406214816, 87803248260, 6213408758960, 491423381371208, 42958461746823376, 4112928296979824348, 428022362222941505760, 48106759414197240877200, 5807382441785322296139392
Offset: 0

Views

Author

Vladeta Jovovic, Aug 22 2006

Keywords

Crossrefs

Cf. A054545, A053418 (unlabeled).

Programs

  • Maple
    seq(value(Sum(binomial(m*(m-1),n)/2^(m+1),m=0..infinity)),n=0..20); # Vladeta Jovovic, Aug 25 2006

Formula

a(n) = Sum_{m>=0} binomial(m*(m-1),n)/2^(m+1). Column sums of A054547.

Extensions

More terms from Max Alekseyev, Aug 23 2006

A217580 Triangular array read by rows. T(n,k) is the number of labeled digraphs on n nodes with exactly k isolated nodes. 0<=k<=n.

Original entry on oeis.org

1, 0, 1, 3, 0, 1, 54, 9, 0, 1, 3861, 216, 18, 0, 1, 1028700, 19305, 540, 30, 0, 1, 1067510583, 6172200, 57915, 1080, 45, 0, 1, 4390552197234, 7472574081, 21602700, 135135, 1890, 63, 0, 1, 72022439672173161, 35124417577872, 29890296324, 57607200, 270270, 3024, 84, 0, 1
Offset: 0

Views

Author

Geoffrey Critzer, Oct 07 2012

Keywords

Comments

Column k=0 is A054545.

Examples

			1;
0, 1;
3, 0, 1;
54, 9, 0, 1;
3861, 216, 18, 0, 1;
1028700, 19305, 540, 30, 0, 1;
1067510583, 6172200, 57915, 1080, 45, 0, 1;
		

Programs

  • Mathematica
    nn=6; s=Sum[2^(2 Binomial[n,2])x^n/n!, {n,0,nn}]; Range[0,nn]! CoefficientList[Series[Exp[y x] s/Exp[x], {x,0,nn}], {x,y}] //Grid

Formula

E.g.f.: exp(y*x)*A(x) where A(x) is the e.g.f. for A054545.
Showing 1-3 of 3 results.