A261064
a(n) = (3^n-1)*(n+1)/4.
Original entry on oeis.org
1, 6, 26, 100, 363, 1274, 4372, 14760, 49205, 162382, 531438, 1727180, 5580127, 17936130, 57395624, 182948560, 581130729, 1840247318, 5811307330, 18305618100, 57531942611, 180441092746, 564859072956, 1765184603000, 5507375961373, 17157594341214, 53379182394902
Offset: 1
- Vincenzo Librandi, Table of n, a(n) for n = 1..1000
- Jean-Luc Baril, Pamela E. Harris, and José L. Ramírez, Flattened Catalan Words, arXiv:2405.05357 [math.CO], 2024. See p. 21.
- Ivaylo Kortezov, problem 8.4 ("Задача 8.4" in Bulgarian) in National Math Contest "Atanas Radev" 2020.
- Mark Shattuck, Enumeration of consecutive patterns in flattened Catalan words, arXiv:2502.10661 [math.CO], 2025. See pp. 3, 6.
- Index entries for linear recurrences with constant coefficients, signature (8,-22,24,-9).
-
[(3^n-1)*(n+1)/4: n in [1..30]]; // Vincenzo Librandi, Aug 31 2016
-
LinearRecurrence[{8, -22, 24, -9}, {1, 6, 26, 100}, 30] (* Vincenzo Librandi, Aug 31 2016 *)
Table[(3^n - 1)(n + 1)/4, {n, 0, 39}] (* Alonso del Arte, Jan 19 2020 *)
-
first(m)=vector(m,i, (3^i-1)*(i+1)/4); /* Anders Hellström, Aug 08 2015 */
A378727
The total number of fires in a rooted undirected infinite 4-ary tree with a self-loop at the root, when the chip-firing process starts with (4^n-1)/3 chips at the root.
Original entry on oeis.org
0, 1, 10, 67, 380, 1973, 9710, 46119, 213600, 970905, 4349650, 19262731, 84507460, 367855997, 1590728630, 6840133103, 29269406760, 124713124449, 529394487450, 2239745908435, 9447655468300, 39745309211461, 166799986198910, 698474942207927, 2918999758480880, 12176398992520233, 50707195804467810
Offset: 1
- Yifan Xie, Table of n, a(n) for n = 1..2000
- Dillan Agrawal, Selena Ge, Jate Greene, Tanya Khovanova, Dohun Kim, Rajarshi Mandal, Tanish Parida, Anirudh Pulugurtha, Gordon Redwine, Soham Samanta, and Albert Xu, Chip-Firing on Infinite k-ary Trees, arXiv:2501.06675 [math.CO], 2025. See p. 15.
- Wikipedia, Chip-firing game.
- Index entries for linear recurrences with constant coefficients, signature (10,-33,40,-16).
A378728
The total number of fires in a rooted undirected infinite 5-ary tree with a self-loop at the root, when the chip-firing process starts with (5^n-1)/4 chips at the root.
Original entry on oeis.org
0, 1, 12, 98, 684, 4395, 26856, 158692, 915528, 5187989, 28991700, 160217286, 877380372, 4768371583, 25749206544, 138282775880, 739097595216, 3933906555177, 20861625671388, 110268592834474, 581145286560060, 3054738044738771, 16018748283386232, 83819031715393068
Offset: 1
- Yifan Xie, Table of n, a(n) for n = 1..1000
- Dillan Agrawal, Selena Ge, Jate Greene, Tanya Khovanova, Dohun Kim, Rajarshi Mandal, Tanish Parida, Anirudh Pulugurtha, Gordon Redwine, Soham Samanta, and Albert Xu, Chip-Firing on Infinite k-ary Trees, arXiv:2501.06675 [math.CO], 2025. See p. 16.
- Wikipedia, Chip-firing game.
- Index entries for linear recurrences with constant coefficients, signature (12,-46,60,-25).
Showing 1-3 of 3 results.
Comments