cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A378728 The total number of fires in a rooted undirected infinite 5-ary tree with a self-loop at the root, when the chip-firing process starts with (5^n-1)/4 chips at the root.

Original entry on oeis.org

0, 1, 12, 98, 684, 4395, 26856, 158692, 915528, 5187989, 28991700, 160217286, 877380372, 4768371583, 25749206544, 138282775880, 739097595216, 3933906555177, 20861625671388, 110268592834474, 581145286560060, 3054738044738771, 16018748283386232, 83819031715393068
Offset: 1

Views

Author

Tanya Khovanova and the MIT PRIMES STEP senior group, Dec 05 2024

Keywords

Comments

Each vertex of this tree has degree 6. If a vertex has at least 6 chips, the vertex fires, and one chip is sent to each neighbor. The root sends 1 chip to each of its five children and one chip to itself.
The order of the firings doesn't affect the number of firings.
This number of chips is interesting because the stable configuration has 1 chip for every vertex in the top n layers.
a(n) is partial sums of A014917.
For binary trees, the corresponding sequence is A045618.
For ternary trees, the corresponding sequence is A212337.
For 4-ary trees, the corresponding sequence is A378727.
a(2k-1) is divisible by 12.

Crossrefs

Programs

  • Mathematica
    Table[((2 n - 3) 5^n + 2 n + 3)/32, {n, 30}]

Formula

a(n) = ((2*n - 3)*5^n + 2*n + 3)/32.
G.f.: x^2/(1-6*x+5*x^2)^2. - Jinyuan Wang, Jan 24 2025

A059045 Square array T(n,k) read by antidiagonals where T(0,k) = 0 and T(n,k) = 1 + 2k + 3k^2 + ... + n*k^(n-1).

Original entry on oeis.org

0, 1, 0, 1, 1, 0, 1, 3, 1, 0, 1, 6, 5, 1, 0, 1, 10, 17, 7, 1, 0, 1, 15, 49, 34, 9, 1, 0, 1, 21, 129, 142, 57, 11, 1, 0, 1, 28, 321, 547, 313, 86, 13, 1, 0, 1, 36, 769, 2005, 1593, 586, 121, 15, 1, 0, 1, 45, 1793, 7108, 7737, 3711, 985, 162, 17, 1, 0, 1, 55, 4097, 24604, 36409
Offset: 0

Views

Author

Henry Bottomley, Dec 18 2000

Keywords

Examples

			   0,   0,   0,    0,     0,      0,      0,      0,       0, ...
   1,   1,   1,    1,     1,      1,      1,      1,       1, ...
   1,   3,   5,    7,     9,     11,     13,     15,      17, ...
   1,   6,  17,   34,    57,     86,    121,    162,     209, ...
   1,  10,  49,  142,   313,    586,    985,   1534,    2257, ...
   1,  15, 129,  547,  1593,   3711,   7465,  13539,   22737, ...
   1,  21, 321, 2005,  7737,  22461,  54121, 114381,  219345, ...
   1,  28, 769, 7108, 36409, 131836, 380713, 937924, 2054353, ...
		

Crossrefs

Programs

  • Maple
    A059045 := proc(n,k)
        if k = 1 then
            n*(n+1) /2 ;
        else
            (1+n*k^(n+1)-k^n*(n+1))/(k-1)^2 ;
        end if;
    end proc: # R. J. Mathar, Mar 29 2013

Formula

T(n,k) = n*k^(n-1)+T(n-1, k) = (n*k^(n+1)-(n+1)*k^n+1)/(k-1)^2.

A108283 Triangle read by rows, generated from (..., 3, 2, 1).

Original entry on oeis.org

1, 1, 3, 1, 5, 6, 1, 7, 17, 10, 1, 9, 34, 49, 15, 1, 11, 57, 142, 129, 21, 1, 13, 86, 313, 547, 321, 28, 1, 15, 121, 586, 1593, 2005, 769, 36, 1, 17, 162, 985, 3711, 7737, 7108, 1793, 45, 1, 19, 209, 1534, 7465, 22461, 36409, 24604, 4097, 55, 1, 21, 262, 2257, 13539, 54121, 131836, 167481, 83653, 9217, 66
Offset: 1

Views

Author

Gary W. Adamson, May 30 2005

Keywords

Comments

Inverse binomial transforms of each column form the rows of A108284. Rightmost diagonal = triangular numbers, (A000217); while diagonals going to the left from (1, 3, 6, ...) are A000337 starting with 1: (1, 5, 17, 49, ...); A014915: (1, 7, 34, 142, ...); A014916: (1, 9, 57, ...); A014917: (1, 11, 86, ...).

Examples

			4th column = 10, 49, 142, 313, ... = f(x), x = 1, 2, 3; 4x^3 + 3x^2 + 2x + 1. f(3) = 142.
First few rows of the triangle:
  1;
  1,  3;
  1,  5,  6;
  1,  7, 17,  10;
  1,  9, 34,  49,  15;
  1, 11, 57, 142, 129, 21;
  ...
		

Crossrefs

Programs

  • Maple
    A108283 := proc(n,k)
        local x ;
        x := n-k+1 ;
        add( i*x^(i-1),i=1..k) ;
    end proc:
    seq(seq( A108283(n,k),k=1..n),n=1..10) ; # R. J. Mathar, Sep 14 2016
  • Mathematica
    T[, 1] := 1; T[n, n_] := n (n + 1)/2; T[n_, k_] := (1 - (n - k + 1)^k*(k^2 - k*n + 1))/(n - k)^2; Table[T[n, k], {n, 1, 10}, {k, 1, n}] // Flatten (* Jean-François Alcover, Sep 13 2016 *)

Formula

n-th column = f(x), x = 1, 2, 3; n*x^(n-1) + (n-1)*x^(n-2) + (n-3)*x^(n-3) + ... + 1.
T(n,k) = (1+ (n-k+1)^k*(n*k-k^2-1))/ (n-k)^2, n>k. - Jean-François Alcover, Sep 13 2016

Extensions

More terms from Jean-François Alcover, Sep 13 2016
Showing 1-3 of 3 results.