cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 13 results. Next

A225413 Triangle read by rows: T(n,k) = (A101164(n,k) - A014473(n,k))/2.

Original entry on oeis.org

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 3, 3, 0, 0, 0, 0, 6, 12, 6, 0, 0, 0, 0, 10, 30, 30, 10, 0, 0, 0, 0, 15, 60, 91, 60, 15, 0, 0, 0, 0, 21, 105, 215, 215, 105, 21, 0, 0, 0, 0, 28, 168, 435, 590, 435, 168, 28, 0, 0, 0, 0, 36, 252, 791, 1365, 1365, 791, 252, 36, 0, 0
Offset: 0

Views

Author

Jeremy Gardiner, Jul 28 2013

Keywords

Comments

Has opposite parity to A140356, A155454.

Examples

			Triangle begins as:
  0;
  0,  0;
  0,  0,  0;
  0,  0,  0,   0;
  0,  0,  1,   0,    0;
  0,  0,  3,   3,    0,    0;
  0,  0,  6,  12,    6,    0,    0;
  0,  0, 10,  30,   30,   10,    0,    0;
  0,  0, 15,  60,   91,   60,   15,    0,    0;
  0,  0, 21, 105,  215,  215,  105,   21,    0,    0;
  0,  0, 28, 168,  435,  590,  435,  168,   28,    0,   0;
  0,  0, 36, 252,  791, 1365, 1365,  791,  252,   36,   0,  0;
  0,  0, 45, 360, 1330, 2800, 3571, 2800, 1330,  360,  45,  0,  0;
  0,  0, 55, 495, 2106, 5250, 8197, 8197, 5250, 2106, 495, 55,  0,  0;
		

Crossrefs

3rd column = A000217 (triangular numbers).
4th column = A027480 (n(n+1)(n+2)/2).

Programs

  • Haskell
    a225413 n k = a225413_tabl !! n !! k
    a225413_row n = a225413_tabl !! n
    a225413_tabl = map (map (`div` 2)) $
                   zipWith (zipWith (-)) a101164_tabl a014473_tabl
    -- Reinhard Zumkeller, Jul 30 2013
    
  • Magma
    A008288:= func< n,k | (&+[Binomial(n-j, j)*Binomial(n-2*j, k-j): j in [0..k]]) >;
    A225413:= func< n,k | (A008288(n,k) - 2*Binomial(n,k) + 1)/2 >;
    [A225413(n,k): k in [0..n], n in [0..12]]; // G. C. Greubel, Apr 08 2024
    
  • Mathematica
    T[n_, k_]:= ((-1)^(n-k)*Hypergeometric2F1[-n+k,k+1,1,2] - 2*Binomial[n, k] +1)/2;
    Table[T[n,k], {n,0,12}, {k,0,n}]//Flatten (* G. C. Greubel, Apr 08 2024 *)
  • SageMath
    def A008288(n,k): return sum(binomial(n-j,j)*binomial(n-2*j,k-j) for j in range(k+1))
    def A225413(n,k): return (A008288(n,k) -2*binomial(n,k) +1)//2
    flatten([[A225413(n,k) for k in range(n+1)] for n in range(13)]) # G. C. Greubel, Apr 08 2024

Formula

T(n, k) = (A101164(n,k) - A014473(n,k))/2.
T(n, k) = (A008288(n,k) - 2*A007318(n,k) + 1)/2.
From G. C. Greubel, Apr 08 2024: (Start)
T(n, n-k) = T(n, k).
Sum_{k=0..n} T(n, k) = (A000129(n+1) + n + 1 - 2^(n+1))/2.
Sum_{k=0..n} (-1)^k*T(n, k) = A121262(n) - [n=0]. (End)

A000096 a(n) = n*(n+3)/2.

Original entry on oeis.org

0, 2, 5, 9, 14, 20, 27, 35, 44, 54, 65, 77, 90, 104, 119, 135, 152, 170, 189, 209, 230, 252, 275, 299, 324, 350, 377, 405, 434, 464, 495, 527, 560, 594, 629, 665, 702, 740, 779, 819, 860, 902, 945, 989, 1034, 1080, 1127, 1175, 1224, 1274, 1325, 1377, 1430, 1484, 1539, 1595, 1652, 1710, 1769
Offset: 0

Views

Author

Keywords

Comments

For n >= 1, a(n) is the maximal number of pieces that can be obtained by cutting an annulus with n cuts. See illustration. - Robert G. Wilson v
n(n-3)/2 (n >= 3) is the number of diagonals of an n-gon. - Antreas P. Hatzipolakis (xpolakis(AT)otenet.gr)
n(n-3)/2 (n >= 4) is the degree of the third-smallest irreducible presentation of the symmetric group S_n (cf. James and Kerber, Appendix 1).
a(n) is also the multiplicity of the eigenvalue (-2) of the triangle graph Delta(n+1). (See p. 19 in Biggs.) - Felix Goldberg (felixg(AT)tx.technion.ac.il), Nov 25 2001
For n > 3, a(n-3) = dimension of the traveling salesman polytope T(n). - Benoit Cloitre, Aug 18 2002
Also counts quasi-dominoes (quasi-2-ominoes) on an n X n board. Cf. A094170-A094172. - Jon Wild, May 07 2004
Coefficient of x^2 in (1 + x + 2*x^2)^n. - Michael Somos, May 26 2004
a(n) is the number of "prime" n-dimensional polyominoes. A "prime" n-polyomino cannot be formed by connecting any other n-polyominoes except for the n-monomino and the n-monomino is not prime. E.g., for n=1, the 1-monomino is the line of length 1 and the only "prime" 1-polyominoes are the lines of length 2 and 3. This refers to "free" n-dimensional polyominoes, i.e., that can be rotated along any axis. - Bryan Jacobs (bryanjj(AT)gmail.com), Apr 01 2005
Solutions to the quadratic equation q(m, r) = (-3 +- sqrt(9 + 8(m - r))) / 2, where m - r is included in a(n). Let t(m) = the triangular number (A000217) less than some number k and r = k - t(m). If k is neither prime nor a power of two and m - r is included in A000096, then m - q(m, r) will produce a value that shares a divisor with k. - Andrew S. Plewe, Jun 18 2005
Sum_{k=2..n+1} 4/(k*(k+1)*(k-1)) = ((n+3)*n)/((n+2)*(n+1)). Numerator(Sum_{k=2..n+1} 4/(k*(k+1)*(k-1))) = (n+3)*n/2. - Alexander Adamchuk, Apr 11 2006
Number of rooted trees with n+3 nodes of valence 1, no nodes of valence 2 and exactly two other nodes. I.e., number of planted trees with n+2 leaves and exactly two branch points. - Theo Johnson-Freyd (theojf(AT)berkeley.edu), Jun 10 2007
If X is an n-set and Y a fixed 2-subset of X then a(n-2) is equal to the number of (n-2)-subsets of X intersecting Y. - Milan Janjic, Jul 30 2007
For n >= 1, a(n) is the number of distinct shuffles of the identity permutation on n+1 letters with the identity permutation on 2 letters (12). - Camillia Smith Barnes, Oct 04 2008
If s(n) is a sequence defined as s(1) = x, s(n) = kn + s(n-1) + p for n > 1, then s(n) = a(n-1)*k + (n-1)*p + x. - Gary Detlefs, Mar 04 2010
The only primes are a(1) = 2 and a(2) = 5. - Reinhard Zumkeller, Jul 18 2011
a(n) = m such that the (m+1)-th triangular number minus the m-th triangular number is the (n+1)-th triangular number: (m+1)(m+2)/2 - m(m+1)/2 = (n+1)(n+2)/2. - Zak Seidov, Jan 22 2012
For n >= 1, number of different values that Sum_{k=1..n} c(k)*k can take where the c(k) are 0 or 1. - Joerg Arndt, Jun 24 2012
On an n X n chessboard (n >= 2), the number of possible checkmate positions in the case of king and rook versus a lone king is 0, 16, 40, 72, 112, 160, 216, 280, 352, ..., which is 8*a(n-2). For a 4 X 4 board the number is 40. The number of positions possible was counted including all mirror images and rotations for all four sides of the board. - Jose Abutal, Nov 19 2013
If k = a(i-1) or k = a(i+1) and n = k + a(i), then C(n, k-1), C(n, k), C(n, k+1) are three consecutive binomial coefficients in arithmetic progression and these are all the solutions. There are no four consecutive binomial coefficients in arithmetic progression. - Michael Somos, Nov 11 2015
a(n-1) is also the number of independent components of a symmetric traceless tensor of rank 2 and dimension n >= 1. - Wolfdieter Lang, Dec 10 2015
Numbers k such that 8k + 9 is a square. - Juri-Stepan Gerasimov, Apr 05 2016
Let phi_(D,rho) be the average value of a generic degree D monic polynomial f when evaluated at the roots of the rho-th derivative of f, expressed as a polynomial in the averaged symmetric polynomials in the roots of f. [See the Wojnar et al. link] The "last" term of phi_(D,rho) is a multiple of the product of all roots of f; the coefficient is expressible as a polynomial h_D(N) in N:=D-rho. These polynomials are of the form h_D(N)= ((-1)^D/(D-1)!)*(D-N)*N^chi*g_D(N) where chi = (1 if D is odd, 0 if D is even) and g_D(N) is a monic polynomial of degree (D-2-chi). Then a(n) are the negated coefficients of the next to the highest order term in the polynomials N^chi*g_D(N), starting at D=3. - Gregory Gerard Wojnar, Jul 19 2017
For n >= 2, a(n) is the number of summations required to solve the linear regression of n variables (n-1 independent variables and 1 dependent variable). - Felipe Pedraza-Oropeza, Dec 07 2017
For n >= 2, a(n) is the number of sums required to solve the linear regression of n variables: 5 for two variables (sums of X, Y, X^2, Y^2, X*Y), 9 for 3 variables (sums of X1, X2, Y1, X1^2, X1*X2, X1*Y, X2^2, X2*Y, Y^2), and so on. - Felipe Pedraza-Oropeza, Jan 11 2018
a(n) is the area of a triangle with vertices at (n, n+1), ((n+1)*(n+2)/2, (n+2)*(n+3)/2), ((n+2)^2, (n+3)^2). - J. M. Bergot, Jan 25 2018
Number of terms less than 10^k: 1, 4, 13, 44, 140, 446, 1413, 4471, 14141, 44720, 141420, 447213, ... - Muniru A Asiru, Jan 25 2018
a(n) is also the number of irredundant sets in the (n+1)-path complement graph for n > 2. - Eric W. Weisstein, Apr 11 2018
a(n) is also the largest number k such that the largest Dyck path of the symmetric representation of sigma(k) has exactly n peaks, n >= 1. (Cf. A237593.) - Omar E. Pol, Sep 04 2018
For n > 0, a(n) is the number of facets of associahedra. Cf. A033282 and A126216 and their refinements A111785 and A133437 for related combinatorial and analytic constructs. See p. 40 of Hanson and Sha for a relation to projective spaces and string theory. - Tom Copeland, Jan 03 2021
For n > 0, a(n) is the number of bipartite graphs with 2n or 2n+1 edges, no isolated vertices, and a stable set of cardinality 2. - Christian Barrientos, Jun 13 2022
For n >= 2, a(n-2) is the number of permutations in S_n which are the product of two different transpositions of adjacent points. - Zbigniew Wojciechowski, Mar 31 2023
a(n) represents the optimal stop-number to achieve the highest running score for the Greedy Pig game with an (n-1)-sided die with a loss on a 1. The total at which one should stop is a(s-1), e.g. for a 6-sided die, one should pass the die at 20. See Sparks and Haran. - Nicholas Stefan Georgescu, Jun 09 2024

Examples

			G.f. = 2*x + 5*x^2 + 9*x^3 + 14*x^4 + 20*x^5 + 27*x^6 + 35*x^7 + 44*x^8 + 54*x^9 + ...
		

References

  • M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards Applied Math. Series 55, 1964 (and various reprintings), Table 22.7, p. 797.
  • Norman Biggs, Algebraic Graph Theory, 2nd ed. Cambridge University Press, 1993.
  • G. James and A. Kerber, The Representation Theory of the Symmetric Group, Encyclopedia of Maths. and its Appls., Vol. 16, Addison-Wesley, 1981, Reading, MA, U.S.A.
  • D. G. Kendall et al., Shape and Shape Theory, Wiley, 1999; see p. 4.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Complement of A007401. Column 2 of A145324. Column of triangle A014473, first skew subdiagonal of A033282, a diagonal of A079508.
Occurs as a diagonal in A074079/A074080, i.e., A074079(n+3, n) = A000096(n-1) for all n >= 2. Also A074092(n) = 2^n * A000096(n-1) after n >= 2.
Cf. numbers of the form n*(n*k-k+4)/2 listed in A226488.
Similar sequences are listed in A316466.

Programs

Formula

G.f.: A(x) = x*(2-x)/(1-x)^3. a(n) = binomial(n+1, n-1) + binomial(n, n-1).
Connection with triangular numbers: a(n) = A000217(n+1) - 1.
a(n) = a(n-1) + n + 1. - Bryan Jacobs (bryanjj(AT)gmail.com), Apr 01 2005
a(n) = 2*t(n) - t(n-1) where t() are the triangular numbers, e.g., a(5) = 2*t(5) - t(4) = 2*15 - 10 = 20. - Jon Perry, Jul 23 2003
a(-3-n) = a(n). - Michael Somos, May 26 2004
2*a(n) = A008778(n) - A105163(n). - Creighton Dement, Apr 15 2005
a(n) = C(3+n, 2) - C(3+n, 1). - Zerinvary Lajos, Dec 09 2005
a(n) = A067550(n+1) / A067550(n). - Alexander Adamchuk, May 20 2006
a(n) = A126890(n,1) for n > 0. - Reinhard Zumkeller, Dec 30 2006
a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3). - Paul Curtz, Jan 02 2008
Starting (2, 5, 9, 14, ...) = binomial transform of (2, 3, 1, 0, 0, 0, ...). - Gary W. Adamson, Jul 03 2008
For n >= 0, a(n+2) = b(n+1) - b(n), where b(n) is the sequence A005586. - K.V.Iyer, Apr 27 2009
A002262(a(n)) = n. - Reinhard Zumkeller, May 20 2009
Let A be the Toeplitz matrix of order n defined by: A[i,i-1]=-1, A[i,j]=Catalan(j-i), (i<=j), and A[i,j]=0, otherwise. Then, for n>=1, a(n-1)=coeff(charpoly(A,x),x^(n-2)). - Milan Janjic, Jul 08 2010
a(n) = Sum_{k=1..n} (k+1)!/k!. - Gary Detlefs, Aug 03 2010
a(n) = n(n+1)/2 + n = A000217(n) + n. - Zak Seidov, Jan 22 2012
E.g.f.: F(x) = 1/2*x*exp(x)*(x+4) satisfies the differential equation F''(x) - 2*F'(x) + F(x) = exp(x). - Peter Bala, Mar 14 2012
a(n) = binomial(n+3, 2) - (n+3). - Robert G. Wilson v, Mar 15 2012
a(n) = A181971(n+1, 2) for n > 0. - Reinhard Zumkeller, Jul 09 2012
a(n) = A214292(n+2, 1). - Reinhard Zumkeller, Jul 12 2012
G.f.: -U(0) where U(k) = 1 - 1/((1-x)^2 - x*(1-x)^4/(x*(1-x)^2 - 1/U(k+1))); (continued fraction, 3-step). - Sergei N. Gladkovskii, Sep 27 2012
A023532(a(n)) = 0. - Reinhard Zumkeller, Dec 04 2012
a(n) = A014132(n,n) for n > 0. - Reinhard Zumkeller, Dec 12 2012
a(n-1) = (1/n!)*Sum_{j=0..n} binomial(n,j)*(-1)^(n-j)*j^n*(j-1). - Vladimir Kruchinin, Jun 06 2013
a(n) = 2n - floor(n/2) + floor(n^2/2). - Wesley Ivan Hurt, Jun 15 2013
a(n) = Sum_{i=2..n+1} i. - Wesley Ivan Hurt, Jun 28 2013
Sum_{n>0} 1/a(n) = 11/9. - Enrique Pérez Herrero, Nov 26 2013
a(n) = Sum_{i=1..n} (n - i + 2). - Wesley Ivan Hurt, Mar 31 2014
A023531(a(n)) = 1. - Reinhard Zumkeller, Feb 14 2015
For n > 0: a(n) = A101881(2*n-1). - Reinhard Zumkeller, Feb 20 2015
a(n) + a(n-1) = A008865(n+1) for all n in Z. - Michael Somos, Nov 11 2015
a(n+1) = A127672(4+n, n), n >= 0, where A127672 gives the coefficients of the Chebyshev C polynomials. See the Abramowitz-Stegun reference. - Wolfdieter Lang, Dec 10 2015
a(n) = (n+1)^2 - A000124(n). - Anton Zakharov, Jun 29 2016
Dirichlet g.f.: (zeta(s-2) + 3*zeta(s-1))/2. - Ilya Gutkovskiy, Jun 30 2016
a(n) = 2*A000290(n+3) - 3*A000217(n+3). - J. M. Bergot, Apr 04 2018
a(n) = Stirling2(n+2, n+1) - 1. - Peter Luschny, Jan 05 2021
Sum_{n>=1} (-1)^(n+1)/a(n) = 4*log(2)/3 - 5/9. - Amiram Eldar, Jan 10 2021
From Amiram Eldar, Jan 20 2021: (Start)
Product_{n>=1} (1 + 1/a(n)) = 3.
Product_{n>=1} (1 - 1/a(n)) = 3*cos(sqrt(17)*Pi/2)/(4*Pi). (End)
Product_{n>=0} a(4*n+1)*a(4*n+4)/(a(4*n+2)*a(4*n+3)) = Pi/6. - Michael Jodl, Apr 05 2025

A000295 Eulerian numbers (Euler's triangle: column k=2 of A008292, column k=1 of A173018).

Original entry on oeis.org

0, 0, 1, 4, 11, 26, 57, 120, 247, 502, 1013, 2036, 4083, 8178, 16369, 32752, 65519, 131054, 262125, 524268, 1048555, 2097130, 4194281, 8388584, 16777191, 33554406, 67108837, 134217700, 268435427, 536870882, 1073741793, 2147483616, 4294967263, 8589934558
Offset: 0

Views

Author

Keywords

Comments

There are 2 versions of Euler's triangle:
* A008292 Classic version of Euler's triangle used by Comtet (1974).
* A173018 Version of Euler's triangle used by Graham, Knuth and Patashnik in Concrete Math. (1990).
Euler's triangle rows and columns indexing conventions:
* A008292 The rows and columns of the Eulerian triangle are both indexed starting from 1. (Classic version: used in the classic books by Riordan and Comtet.)
* A173018 The rows and columns of the Eulerian triangle are both indexed starting from 0. (Graham et al.)
Number of Dyck paths of semilength n having exactly one long ascent (i.e., ascent of length at least two). Example: a(4)=11 because among the 14 Dyck paths of semilength 4, the paths that do not have exactly one long ascent are UDUDUDUD (no long ascent), UUDDUUDD and UUDUUDDD (two long ascents). Here U=(1,1) and D=(1,-1). Also number of ordered trees with n edges having exactly one branch node (i.e., vertex of outdegree at least two). - Emeric Deutsch, Feb 22 2004
Number of permutations of {1,2,...,n} with exactly one descent (i.e., permutations (p(1),p(2),...,p(n)) such that #{i: p(i)>p(i+1)}=1). E.g., a(3)=4 because the permutations of {1,2,3} with one descent are 132, 213, 231 and 312.
a(n+1) is the convolution of nonnegative integers (A001477) and powers of two (A000079). - Graeme McRae, Jun 07 2006
Partial sum of main diagonal of A125127. - Jonathan Vos Post, Nov 22 2006
Number of partitions of an n-set having exactly one block of size > 1. Example: a(4)=11 because, if the partitioned set is {1,2,3,4}, then we have 1234, 123|4, 124|3, 134|2, 1|234, 12|3|4, 13|2|4, 14|2|3, 1|23|4, 1|24|3 and 1|2|34. - Emeric Deutsch, Oct 28 2006
k divides a(k+1) for k in A014741. - Alexander Adamchuk, Nov 03 2006
(Number of permutations avoiding patterns 321, 2413, 3412, 21534) minus one. - Jean-Luc Baril, Nov 01 2007, Mar 21 2008
The chromatic invariant of the prism graph P_n for n >= 3. - Jonathan Vos Post, Aug 29 2008
Decimal integer corresponding to the result of XORing the binary representation of 2^n - 1 and the binary representation of n with leading zeros. This sequence and a few others are syntactically similar. For n > 0, let D(n) denote the decimal integer corresponding to the binary number having n consecutive 1's. Then D(n).OP.n represents the n-th term of a sequence when .OP. stands for a binary operator such as '+', '-', '*', 'quotentof', 'mod', 'choose'. We then get the various sequences A136556, A082495, A082482, A066524, A000295, A052944. Another syntactically similar sequence results when we take the n-th term as f(D(n)).OP.f(n). For example if f='factorial' and .OP.='/', we get (A136556)(A000295) ; if f='squaring' and .OP.='-', we get (A000295)(A052944). - K.V.Iyer, Mar 30 2009
Chromatic invariant of the prism graph Y_n.
Number of labelings of a full binary tree of height n-1, such that each path from root to any leaf contains each label from {1,2,...,n-1} exactly once. - Michael Vielhaber (vielhaber(AT)gmail.com), Nov 18 2009
Also number of nontrivial equivalence classes generated by the weak associative law X((YZ)T)=(X(YZ))T on words with n open and n closed parentheses. Also the number of join (resp. meet)-irreducible elements in the pruning-grafting lattice of binary trees with n leaves. - Jean Pallo, Jan 08 2010
Nonzero terms of this sequence can be found from the row sums of the third sub-triangle extracted from Pascal's triangle as indicated below by braces:
1;
1, 1;
{1}, 2, 1;
{1, 3}, 3, 1;
{1, 4, 6}, 4, 1;
{1, 5, 10, 10}, 5, 1;
{1, 6, 15, 20, 15}, 6, 1;
... - L. Edson Jeffery, Dec 28 2011
For integers a, b, denote by a<+>b the least c >= a, such that the Hamming distance D(a,c) = b (note that, generally speaking, a<+>b differs from b<+>a). Then for n >= 3, a(n) = n<+>n. This has a simple explanation: for n >= 3 in binary we have a(n) = (2^n-1)-n = "anti n". - Vladimir Shevelev, Feb 14 2012
a(n) is the number of binary sequences of length n having at least one pair 01. - Branko Curgus, May 23 2012
Nonzero terms are those integers k for which there exists a perfect (Hamming) error-correcting code. - L. Edson Jeffery, Nov 28 2012
a(n) is the number of length n binary words constructed in the following manner: Select two positions in which to place the first two 0's of the word. Fill in all (possibly none) of the positions before the second 0 with 1's and then complete the word with an arbitrary string of 0's or 1's. So a(n) = Sum_{k=2..n} (k-1)*2^(n-k). - Geoffrey Critzer, Dec 12 2013
Without first 0: a(n)/2^n equals Sum_{k=0..n} k/2^k. For example: a(5)=57, 57/32 = 0/1 + 1/2 + 2/4 + 3/8 + 4/16 + 5/32. - Bob Selcoe, Feb 25 2014
The first barycentric coordinate of the centroid of the first n rows of Pascal's triangle, assuming the numbers are weights, is A000295(n+1)/A000337(n). See attached figure. - César Eliud Lozada, Nov 14 2014
Starting (0, 1, 4, 11, ...), this is the binomial transform of (0, 1, 2, 2, 2, ...). - Gary W. Adamson, Jul 27 2015
Also the number of (non-null) connected induced subgraphs in the n-triangular honeycomb rook graph. - Eric W. Weisstein, Aug 27 2017
a(n) is the number of swaps needed in the worst case to transform a binary tree with n full levels into a heap, using (bottom-up) heapify. - Rudy van Vliet, Sep 19 2017
The utility of large networks, particularly social networks, with n participants is given by the terms a(n) of this sequence. This assertion is known as Reed's Law, see the Wikipedia link. - Johannes W. Meijer, Jun 03 2019
a(n-1) is the number of subsets of {1..n} in which the largest element of the set exceeds by at least 2 the next largest element. For example, for n = 5, a(4) = 11 and the 11 sets are {1,3}, {1,4}, {1,5}, {2,4}, {2,5}, {3,5}, {1,2,4}, {1,2,5}, {1,3,5}, {2,3,5}, {1,2,3,5}. - Enrique Navarrete, Apr 08 2020
a(n-1) is also the number of subsets of {1..n} in which the second smallest element of the set exceeds by at least 2 the smallest element. For example, for n = 5, a(4) = 11 and the 11 sets are {1,3}, {1,4}, {1,5}, {2,4}, {2,5}, {3,5}, {1,3,4}, {1,3,5}, {1,4,5}, {2,4,5}, {1,3,4,5}. - Enrique Navarrete, Apr 09 2020
a(n+1) is the sum of the smallest elements of all subsets of {1..n}. For example, for n=3, a(4)=11; the subsets of {1,2,3} are {1}, {2}, {3}, {1,2}, {1,3}, {2,3}, {1,2,3}, and the sum of smallest elements is 11. - Enrique Navarrete, Aug 20 2020
Number of subsets of an n-set that have more than one element. - Eric M. Schmidt, Mar 13 2021
Number of individual bets in a "full cover" bet on n-1 horses, dogs, etc. in different races. Each horse, etc. can be bet on or not, giving 2^n bets. But, by convention, singles (a bet on only one race) are not included, reducing the total number bets by n. It is also impossible to bet on no horses at all, reducing the number of bets by another 1. A full cover on 4 horses, dogs, etc. is therefore 6 doubles, 4 trebles and 1 four-horse etc. accumulator. In British betting, such a bet on 4 horses etc. is a Yankee; on 5, a super-Yankee. - Paul Duckett, Nov 17 2021
From Enrique Navarrete, May 25 2022: (Start)
Number of binary sequences of length n with at least two 1's.
a(n-1) is the number of ways to choose an odd number of elements greater than or equal to 3 out of n elements.
a(n+1) is the number of ways to split [n] = {1,2,...,n} into two (possibly empty) complementary intervals {1,2,...,i} and {i+1,i+2,...,n} and then select a subset from the first interval (2^i choices, 0 <= i <= n), and one block/cell (i.e., subinterval) from the second interval (n-i choices, 0 <= i <= n).
(End)
Number of possible conjunctions in a system of n planets; for example, there can be 0 conjunctions with one planet, one with two planets, four with three planets (three pairs of planets plus one with all three) and so on. - Wendy Appleby, Jan 02 2023
Largest exponent m such that 2^m divides (2^n-1)!. - Franz Vrabec, Aug 18 2023
It seems that a(n-1) is the number of odd r with 0 < r < 2^n for which there exist u,v,w in the x-independent beginning of the Collatz trajectory of 2^n x + r with u+v = w+1, as detailed in the link "Collatz iteration and Euler numbers?". A better understanding of this might also give a formula for A374527. - Markus Sigg, Aug 02 2024
This sequence has a connection to consecutively halved positional voting (CHPV); see Mendenhall and Switkay. - Hal M. Switkay, Feb 25 2025
a(n) is the number of subsets of size 2 and more of an n-element set. Equivalently, a(n) is the number of (hyper)edges of size 2 and more in a complete hypergraph of n vertices. - Yigit Oktar, Apr 05 2025

Examples

			G.f. = x^2 + 4*x^3 + 11*x^4 + 26*x^5 + 57*x^6 + 120*x^7 + 247*x^8 + 502*x^9 + ...
		

References

  • O. Bottema, Problem #562, Nieuw Archief voor Wiskunde, 28 (1980) 115.
  • L. Comtet, "Permutations by Number of Rises; Eulerian Numbers." Section 6.5 in Advanced Combinatorics: The Art of Finite and Infinite Expansions, rev. enl. ed. Dordrecht, Netherlands: Reidel, pp. 51 and 240-246, 1974.
  • F. N. David and D. E. Barton, Combinatorial Chance. Hafner, NY, 1962, p. 151.
  • R. L. Graham, D. E. Knuth and O. Patashnik, Concrete Mathematics. Addison-Wesley, Reading, MA, 1990.
  • D. E. Knuth, The Art of Computer Programming. Addison-Wesley, Reading, MA, Vol. 3, p. 34.
  • J. Riordan, An Introduction to Combinatorial Analysis, Wiley, 1958, p. 215.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Cf. A008292 (classic version of Euler's triangle used by Comtet (1974)).
Cf. A173018 (version of Euler's triangle used by Graham, Knuth and Patashnik in Concrete Math. (1990)).
Cf. A002662 (partial sums).
Partial sums of A000225.
Row sums of A014473 and of A143291.
Second column of triangles A112493 and A112500.
Sequences A125128 and A130103 are essentially the same.
Column k=1 of A124324.

Programs

  • Haskell
    a000295 n = 2^n - n - 1  -- Reinhard Zumkeller, Nov 25 2013
    
  • Magma
    [2^n-n-1: n in [0..40]]; // Vincenzo Librandi, Jul 29 2015
    
  • Magma
    [EulerianNumber(n, 1): n in [0..40]]; // G. C. Greubel, Oct 02 2024
    
  • Maple
    [ seq(2^n-n-1, n=1..50) ];
    A000295 := -z/(2*z-1)/(z-1)**2; # Simon Plouffe in his 1992 dissertation
    # Grammar specification:
    spec := [S, { B = Set(Z, 1 <= card), C = Sequence(B, 2 <= card), S = Prod(B, C) }, unlabeled]:
    struct := n -> combstruct[count](spec, size = n+1);
    seq(struct(n), n = 0..33); # Peter Luschny, Jul 22 2014
  • Mathematica
    a[n_] = If[n==0, 0, n*(HypergeometricPFQ[{1, 1-n}, {2}, -1] - 1)];
    Table[a[n], {n,0,40}] (* Olivier Gérard, Mar 29 2011 *)
    LinearRecurrence[{4, -5, 2}, {0, 0, 1}, 40] (* Vincenzo Librandi, Jul 29 2015 *)
    Table[2^n -n-1, {n,0,40}] (* Eric W. Weisstein, Nov 16 2017 *)
  • PARI
    a(n)=2^n-n-1 \\ Charles R Greathouse IV, Jun 10 2011
    
  • SageMath
    [2^n -(n+1) for n in range(41)] # G. C. Greubel, Oct 02 2024

Formula

a(n) = 2^n - n - 1.
G.f.: x^2/((1-2*x)*(1-x)^2).
A107907(a(n+2)) = A000079(n+2). - Reinhard Zumkeller, May 28 2005
E.g.f.: exp(x)*(exp(x)-1-x). - Emeric Deutsch, Oct 28 2006
a(0)=0, a(1)=0, a(n) = 3*a(n-1) - 2*a(n-2) + 1. - Miklos Kristof, Mar 09 2005
a(0)=0, a(n) = 2*a(n-1) + n - 1 for all n in Z.
a(n) = Sum_{k=2..n} binomial(n, k). - Paul Barry, Jun 05 2003
a(n+1) = Sum_{i=1..n} Sum_{j=1..i} C(i, j). - Benoit Cloitre, Sep 07 2003
a(n+1) = 2^n*Sum_{k=0..n} k/2^k. - Benoit Cloitre, Oct 26 2003
a(0)=0, a(1)=0, a(n) = Sum_{i=0..n-1} i+a(i) for i > 1. - Gerald McGarvey, Jun 12 2004
a(n+1) = Sum_{k=0..n} (n-k)*2^k. - Paul Barry, Jul 29 2004
a(n) = Sum_{k=0..n} binomial(n, k+2); a(n+2) = Sum_{k=0..n} binomial(n+2, k+2). - Paul Barry, Aug 23 2004
a(n) = Sum_{k=0..floor((n-1)/2)} binomial(n-k-1, k+1)*2^(n-k-2)*(-1/2)^k. - Paul Barry, Oct 25 2004
a(0) = 0; a(n) = Stirling2(n,2) + a(n-1) = A000225(n-1) + a(n-1). - Thomas Wieder, Feb 18 2007
a(n) = A000325(n) - 1. - Jonathan Vos Post, Aug 29 2008
a(0) = 0, a(n) = Sum_{k=0..n-1} 2^k - 1. - Doug Bell, Jan 19 2009
a(n) = A000217(n-1) + A002662(n) for n>0. - Geoffrey Critzer, Feb 11 2009
a(n) = A000225(n) - n. - Zerinvary Lajos, May 29 2009
a(n) = n*(2F1([1,1-n],[2],-1) - 1). - Olivier Gérard, Mar 29 2011
Column k=1 of A173018 starts a'(n) = 0, 1, 4, 11, ... and has the hypergeometric representation n*hypergeom([1, -n+1], [-n], 2). This can be seen as a formal argument to prefer Euler's A173018 over A008292. - Peter Luschny, Sep 19 2014
E.g.f.: exp(x)*(exp(x)-1-x); this is U(0) where U(k) = 1 - x/(2^k - 2^k/(x + 1 - x^2*2^(k+1)/(x*2^(k+1) - (k+1)/U(k+1)))); (continued fraction, 3rd kind, 4-step). - Sergei N. Gladkovskii, Dec 01 2012
a(n) = A079583(n) - A000225(n+1). - Miquel Cerda, Dec 25 2016
a(0) = 0; a(1) = 0; for n > 1: a(n) = Sum_{i=1..2^(n-1)-1} A001511(i). - David Siegers, Feb 26 2019
a(n) = A007814(A028366(n)). - Franz Vrabec, Aug 18 2023
a(n) = Sum_{k=1..floor((n+1)/2)} binomial(n+1, 2*k+1). - Taras Goy, Jan 02 2025

A030662 Number of combinations of n things from 1 to n at a time, with repeats allowed.

Original entry on oeis.org

1, 5, 19, 69, 251, 923, 3431, 12869, 48619, 184755, 705431, 2704155, 10400599, 40116599, 155117519, 601080389, 2333606219, 9075135299, 35345263799, 137846528819, 538257874439, 2104098963719, 8233430727599, 32247603683099, 126410606437751, 495918532948103
Offset: 1

Views

Author

Donald Mintz (djmintz(AT)home.com)

Keywords

Comments

Add terms of an increasingly bigger diamond-shaped part of Pascal's triangle:
.......................... 1
............ 1 .......... 1 1
.. 1 ...... 1 1 ........ 1 2 1
. 1 1 =5 . 1 2 1 =19 .. 1 3 3 1 =69
.. 2 ...... 3 3 ........ 4 6 4
............ 6 ......... 10 10
.......................... 20
- Ralf Stephan, May 17 2004
The prime p divides a((p-1)/2) for p in A002144 (Pythagorean primes). - Alexander Adamchuk, Jul 04 2006
Also, number of square submatrices of a square matrix. - Jono Henshaw (jjono(AT)hotmail.com), Apr 22 2008
Partial sums of A051924. - J. M. Bergot, Jun 22 2013
Number of partitions with Ferrers diagrams that fit in an n X n box (excluding the empty partition of 0). - Michael Somos, Jun 02 2014
Also number of non-descending sequences with length and last number are less or equal to n, and also the number of integer partitions (of any positive integer) with length and largest part are less or equal to n. - Zlatko Damijanic, Dec 06 2024

Examples

			G.f. = x + 5*x^2 + 19*x^3 + 69*x^4 + 251*x^5 + 923*x^6 + 3431*x^7 + ...
		

Crossrefs

Column k=2 of A047909.
Central column of triangle A014473.
Right-hand column 2 of triangle A102541.

Programs

  • Magma
    [(n+1)*Catalan(n)-1: n in [1..40]]; // G. C. Greubel, Apr 07 2024
  • Maple
    seq(sum((binomial(n,m))^2,m=1..n),n=1..23); # Zerinvary Lajos, Jun 19 2008
    f:=n->add( add( binomial(i+j,i), i=0..n),j=0..n); [seq(f(n),n=0..12)]; # N. J. A. Sloane, Jan 31 2009
  • Mathematica
    Table[Sum[Sum[(2n-i-j)!/(n-i)!/(n-j)!,{i,1,n}],{j,1,n}],{n,1,20}] (* Alexander Adamchuk, Jul 04 2006 *)
    a[n_] := 2*(2*n-1)!/(n*(n-1)!^2)-1; Table[a[n], {n, 1, 26}] (* Jean-François Alcover, Oct 11 2012, from first formula *)
  • PARI
    a(n)=binomial(2*n,n)-1 \\ Charles R Greathouse IV, Jun 26 2013
    
  • Python
    from math import comb
    def a(n): return comb(2*n, n) - 1
    print([a(n) for n in range(1, 27)]) # Michael S. Branicky, Jul 11 2023
    
  • Sage
    def a(n) : return binomial(2*n,n) - 1
    [a(n) for n in (1..26)] # Peter Luschny, Apr 21 2012
    

Formula

a(n) = A000984(n) - 1.
a(n) = 2*A001700(n-1) - 1.
a(n) = 2*(2*n-1)!/(n!*(n-1)!)-1.
a(n) = Sum_{k=1..n} binomial(n, k)^2. - Benoit Cloitre, Aug 20 2002
a(n) = Sum_{j=0..n} Sum_{i=j..n+j} binomial(i, j). - Klaus Strassburger (strass(AT)ddfi.uni-duesseldorf.de), Jul 23 2003
a(n) = Sum_{i=0..n-1} Sum_{j=0..n-1} binomial(i+j, i). - N. J. A. Sloane, Jan 31 2009
Also for n>1: a(n)=(2*n)!/(n!)^2-1. - Hugo Pfoertner, Feb 10 2004
a(n) = Sum_{j=1..n} Sum_{i=1..n} (2n-i-j)!/((n-i)!*(n-j)!). - Alexander Adamchuk, Jul 04 2006
a(n) = A115112(n) + 1. - Jono Henshaw (jjono(AT)hotmail.com), Apr 22 2008
G.f.: Q(0)*(1-4*x)/x - 1/x/(1-x), where Q(k)= 1 + 4*(2*k+1)*x/( 1 - 1/(1 + 2*(k+1)/Q(k+1))); (continued fraction). - Sergei N. Gladkovskii, May 11 2013
D-finite with recurrence: n*a(n) +2*(-3*n+2)*a(n-1) +(9*n-14)*a(n-2) +2*(-2*n+5)*a(n-3)=0. - R. J. Mathar, Jun 25 2013
0 = a(n)*(+16*a(n+1) - 70*a(n+2) + 68*a(n+3) - 14*a(n+4)) + a(n+1)*(-2*a(n+1) + 61*a(n+2) - 96*a(n+3) + 23*a(n+4)) + a(n+2)*(-6*a(n+2) + 31*a(n+3) - 10*a(n+4)) + a(n+3)*(-2*a(n+3) + a(n+4)) for all n in Z. - Michael Somos, Jun 02 2014
From Ilya Gutkovskiy, Jan 25 2017: (Start)
O.g.f.: (1 - x - sqrt(1 - 4*x))/((1 - x)*sqrt(1 - 4*x)).
E.g.f.: exp(x)*(exp(x)*BesselI(0,2*x) - 1). (End)
a(n) = 3*n*Sum_{k=1..n} (-1)^(k+1)/(2*n+k)*binomial(2*n+k,n-k). - Vladimir Kruchinin, Jul 29 2025
a(n) = n * binomial(2*n, n) * Sum_{k = 1..n} 1/(k*binomial(n+k, k)). - Peter Bala, Aug 05 2025

A109128 Triangle read by rows: T(n,k) = T(n-1,k-1) + T(n-1,k) + 1 for 0

Original entry on oeis.org

1, 1, 1, 1, 3, 1, 1, 5, 5, 1, 1, 7, 11, 7, 1, 1, 9, 19, 19, 9, 1, 1, 11, 29, 39, 29, 11, 1, 1, 13, 41, 69, 69, 41, 13, 1, 1, 15, 55, 111, 139, 111, 55, 15, 1, 1, 17, 71, 167, 251, 251, 167, 71, 17, 1, 1, 19, 89, 239, 419, 503, 419, 239, 89, 19, 1, 1, 21, 109, 329, 659, 923, 923, 659, 329, 109, 21, 1
Offset: 0

Views

Author

Reinhard Zumkeller, Jun 20 2005

Keywords

Comments

Eigensequence of the triangle = A001861. - Gary W. Adamson, Apr 17 2009

Examples

			Triangle begins as:
  1;
  1   1;
  1   3   1;
  1   5   5   1;
  1   7  11   7   1;
  1   9  19  19   9   1;
  1  11  29  39  29  11   1;
  1  13  41  69  69  41  13   1;
  1  15  55 111 139 111  55  15   1;
  1  17  71 167 251 251 167  71  17   1;
  1  19  89 239 419 503 419 239  89  19   1;
		

Crossrefs

Cf. A000325 (row sums).
Sequence m*binomial(n,k) - (m-1): A007318 (m=1), this sequence (m=2), A131060 (m=3), A131061 (m=4), A131063 (m=5), A131065 (m=6), A131067 (m=7), A168625 (m=8).

Programs

  • Haskell
    a109128 n k = a109128_tabl !! n !! k
    a109128_row n = a109128_tabl !! n
    a109128_tabl = iterate (\row -> zipWith (+)
       ([0] ++ row) (1 : (map (+ 1) $ tail row) ++ [0])) [1]
    -- Reinhard Zumkeller, Apr 10 2012
    
  • Magma
    [2*Binomial(n,k) -1: k in [0..n], n in [0..12]]; // G. C. Greubel, Mar 12 2020
    
  • Maple
    A109128 := proc(n,k)
        2*binomial(n,k)-1 ;
    end proc: # R. J. Mathar, Jul 12 2016
  • Mathematica
    Table[2*Binomial[n,k] -1, {n,0,12}, {k,0,n}]//Flatten (* G. C. Greubel, Mar 12 2020 *)
  • Sage
    [[2*binomial(n,k) -1 for k in (0..n)] for n in (0..12)] # G. C. Greubel, Mar 12 2020

Formula

T(n,k) = T(n-1,k-1) + T(n-1,k) + 1 with T(n,0) = T(n,n) = 1.
Sum_{k=0..n} T(n, k) = A000325(n+1) (row sums).
T(n, k) = 2*binomial(n,k) - 1. - David W. Cantrell (DWCantrell(AT)sigmaxi.net), Sep 30 2007
T(n, 1) = 2*n - 1 = A005408(n+1) for n>0.
T(n, 2) = n^2 + n - 1 = A028387(n-2) for n>1.
T(n, k) = Sum_{j=0..n-k} C(n-k,j)*C(k,j)*(2 - 0^j) for k <= n. - Paul Barry, Apr 27 2006
T(n,k) = A014473(n,k) + A007318(n,k), 0 <= k <= n. - Reinhard Zumkeller, Apr 10 2012
From G. C. Greubel, Apr 06 2024: (Start)
T(n, n-k) = T(n, k).
T(2*n, n) = A134760(n).
T(2*n-1, n) = A030662(n), for n >= 1.
Sum_{k=0..n-1} T(n, k) = A000295(n+1), for n >= 1.
Sum_{k=0..n} (-1)^k*T(n, k) = 2*[n=0] - A000035(n+1).
Sum_{k=0..n-1} (-1)^k*T(n, k) = A327767(n), for n >= 1.
Sum_{k=0..floor(n/2)} T(n-k, k) = A281362(n).
Sum_{k=0..floor((n-1)/2)} T(n-k, k) = A281362(n-1) - (1+(-1)^n)/2 for n >= 1.
Sum_{k=0..floor(n/2)} (-1)^k*T(n-k, k) = b(n), where b(n) is the repeating pattern {1,1,0,-2,-3,-1,2,2,-1,-3,-2,0} with b(n) = b(n-12). (End)

Extensions

Offset corrected by Reinhard Zumkeller, Apr 10 2012

A062748 Fourth column (r=3) of FS(3) staircase array A062745.

Original entry on oeis.org

3, 9, 19, 34, 55, 83, 119, 164, 219, 285, 363, 454, 559, 679, 815, 968, 1139, 1329, 1539, 1770, 2023, 2299, 2599, 2924, 3275, 3653, 4059, 4494, 4959, 5455, 5983, 6544, 7139, 7769, 8435, 9138, 9879, 10659, 11479, 12340, 13243, 14189, 15179, 16214, 17295, 18423
Offset: 0

Views

Author

Wolfdieter Lang, Jul 12 2001

Keywords

Comments

In the Frey-Sellers reference this sequence is called {(n+2) over 3}_{2}, n >= 0.
If X is an n-set and Y a fixed (n-3)-subset of X then a(n-3) is equal to the number of 3-subsets of X intersecting Y. - Milan Janjic, Aug 15 2007
Let A be the Hessenberg matrix of order n, defined by: A[1,j]=1, A[i,i]:=-1, A[i,i-1]=-1, and A[i,j]=0 otherwise. Then, for n>=6, a(n-6) = coeff(charpoly(A,x), x^(n-2)). - Milan Janjic, Jan 26 2010
For n>=4, a(n-4) is the number of permutations of 1,2,...,n, such that n-3 is the only up-point, or, the same, a(n-4) is up-down coefficient {n,4} (see comment in A060351). - Vladimir Shevelev, Feb 14 2014

Examples

			G.f. = 3 + 9*x + 19*x^2 + 34*x^3 + 55*x^4 + 83*x^5 + 119*x^6 + 164*x^7 + ...
		

Crossrefs

A column of triangle A014473.

Programs

  • Magma
    [Binomial(n+4,3) -1 : n in [0..50]]; // G. C. Greubel, Apr 22 2024
    
  • Maple
    seq(((n^3-n)/6)-1,n=3..40); # Zerinvary Lajos, May 05 2007
  • Mathematica
    LinearRecurrence[{4,-6,4,-1},{3,9,19,34},40] (* Harvey P. Dale, Jan 13 2019 *)
    Binomial[4+Range[0,50], 3] -1 (* G. C. Greubel, Apr 22 2024 *)
  • PARI
    {a(n) = binomial(n+4, 3) - 1}; /* Michael Somos, Jan 28 2018 */
    
  • SageMath
    [binomial(n+4,3) - 1 for n in range(51)] # G. C. Greubel, Apr 22 2024

Formula

a(n) = A062745(n+2, 3) = binomial(n+4, 3) - 1 = (n+1)*(n^2 + 8*n + 18)/3!.
G.f.: N(3;1, x)/(1-x)^4 with N(3;1, x) = 3 - 3*x + x^2, polynomial of the second row of A062746.
a(n-3) = ((n^3 - n)/6) - 1, n >= 3. - Zerinvary Lajos, May 05 2007
a(n) = A000292(n+2) - 1. - Zerinvary Lajos, May 05 2007
a(n) = Sum_{i=2..n} i*(i+1)/2. - Artur Jasinski, Mar 14 2008
a(n) = -A050407(-1-n) for all n in Z. - Michael Somos, Jan 28 2018
a(n) = A000292(n+3) - A000124(n+3). - Torlach Rush, Aug 03 2018
E.g.f.: (1/6)*(18 + 36*x + 12*x^2 + x^3)*exp(x). - G. C. Greubel, Apr 22 2024

A063258 a(n) = binomial(n+5,4) - 1.

Original entry on oeis.org

4, 14, 34, 69, 125, 209, 329, 494, 714, 1000, 1364, 1819, 2379, 3059, 3875, 4844, 5984, 7314, 8854, 10625, 12649, 14949, 17549, 20474, 23750, 27404, 31464, 35959, 40919, 46375, 52359, 58904, 66044, 73814, 82250, 91389, 101269, 111929, 123409, 135750
Offset: 0

Views

Author

Wolfdieter Lang, Jul 12 2001

Keywords

Comments

In the Frey-Sellers reference this sequence is called {(n+2) over 4}_{3}, n >= 0.
If X is an n-set and Y a fixed (n-4)-subset of X then a(n-5) is equal to the number of 4-subsets of X intersecting Y. - Milan Janjic, Aug 15 2007
For n>=5, a(n-5) is the number of permutations of 1,2...,n with the distribution of up (1) - down (0) elements 0...01000 (the first n-5 zeros), or, the same, a(n-5) is up-down coefficient {n,8} (see comment in A060351). - Vladimir Shevelev, Feb 18 2014

Crossrefs

Fifth column (r=4) of FS(4) staircase array A062750.
A column of triangle A014473.

Programs

  • Magma
    [Binomial(n+5,4) -1 : n in [0..50]]; // G. C. Greubel, Apr 22 2024
    
  • Maple
    [seq(binomial(n+5,4)-1,n=0..37)]; # Zerinvary Lajos, Nov 25 2006
  • Mathematica
    Binomial[5+Range[0,50],4] -1 (* G. C. Greubel, Apr 22 2024 *)
  • PARI
    { for (n=0, 1000, write("b063258.txt", n, " ", binomial(n + 5, 4) - 1) ) } \\ Harry J. Smith, Aug 19 2009
    
  • SageMath
    [binomial(n+5,4) -1 for n in range(51)] # G. C. Greubel, Apr 22 2024

Formula

a(n) = A062750(n+2, 4) = (n+6)*(n+1)*(n^2 + 7*n + 16)/4!.
G.f.: (2-x)*(2-2*x+x^2)/(1-x)^5 = N(4;1, x)/(1-x)^5 with N(4;1, x)= 4 - 6*x + 4*x^2 - x^3, polynomial of second row of A062751.
E.g.f.: (1/24)*(96 + 240*x + 120*x^2 + 20*x^3 + x^4)*exp(x). - G. C. Greubel, Apr 22 2024
a(n) = A000332(n+5)-1. - R. J. Mathar, Nov 22 2024

Extensions

Simpler definition from Vladeta Jovovic, Jul 21 2003

A014430 Subtract 1 from Pascal's triangle, read by rows.

Original entry on oeis.org

1, 2, 2, 3, 5, 3, 4, 9, 9, 4, 5, 14, 19, 14, 5, 6, 20, 34, 34, 20, 6, 7, 27, 55, 69, 55, 27, 7, 8, 35, 83, 125, 125, 83, 35, 8, 9, 44, 119, 209, 251, 209, 119, 44, 9, 10, 54, 164, 329, 461, 461, 329, 164, 54, 10, 11, 65, 219, 494, 791, 923, 791, 494, 219, 65, 11
Offset: 0

Views

Author

Keywords

Comments

Each value of the sequence (T(x,y)) is equal to the sum of all values in Pascal's Triangle that are in the rectangle defined by the tip (0,0) and the position (x,y). - Florian Kleedorfer (florian.kleedorfer(AT)austria.fm), May 23 2005
To clarify T(n,k) and A129696: We subtract I = Identity matrix from Pascal's triangle to obtain the beheaded variant, A074909. Then take column sums starting from the top of A074909 to get triangle A014430. Row sums of the inverse of triangle T(n,k) gives the Bernoulli numbers, A027641/A026642. Alternatively, triangle T(n,k) as an infinite lower triangular matrix * [the Bernoulli numbers as a vector] = [1, 1, 1, ...]. Given the B_n version starting (1, 1/2, 1/6, ...) triangle T(n,k) * the B_n vector [1, 1/2, 1/6, 0, -1/30, ...] = the triangular numbers. - Gary W. Adamson, Mar 13 2012
From R. J. Mathar, Apr 25 2016: (Start)
If regarded as a symmetric array of the form
1 2 3 4 5 ...
2 5 9 14 20 ...
3 9 19 34 55 ...
4 14 34 69 125 ...
5 20 55 125 251 ...
6 27 83 209 461 ...
7 35 119 329 791 ...
8 44 164 494 1286 ...
9 54 219 714 2001 ...
it contains the rows (and columns) A000096, A062748, A063258, A062988, A124089, ..., A035927 and so on and counts the multisets of digits of numbers in base b>=2 with d>=1 digits (equivalent to the comment in A035927). (End)
Proof of Florian Kleedorfer's formula: Take sums of the columns of the rectangle - these are all binomial coefficients by the Hockey Stick Identity. Note the locations of these coefficients: They form a row going almost all the way to the edge, only missing the 1 - apply the Hockey Stick Identity again. - James East, Jul 03 2020

Examples

			Triangle begins:
  1;
  2,  2;
  3,  5,  3;
  4,  9,  9,   4;
  5, 14, 19,  14,   5;
  6, 20, 34,  34,  20,  6;
  7, 27, 55,  69,  55, 27,  7;
  8, 35, 83, 125, 125, 83, 35, 8;
		

Crossrefs

Triangle with zeros: A014473.
Cf. A000295 (row sums).

Programs

  • Haskell
    a014430 n k = a014430_tabl !! n !! k
    a014430_row n = a014430_tabl !! n
    a014430_tabl = map (init . tail) $ drop 2 a014473_tabl
    -- Reinhard Zumkeller, Apr 10 2012
    
  • Magma
    [Binomial(n+2,k+1)-1: k in [0..n], n in [0..13]]; // G. C. Greubel, Feb 25 2023
    
  • Mathematica
    Table[Sum[Sum[Binomial[m, j], {m, j, j+(n-k)}], {j,0,k}], {n,0,10}, {k, 0,n}]//Flatten (* Michael De Vlieger, Sep 01 2020 *)
    Table[Binomial[n+2,k+1] -1, {n,0,13}, {k,0,n}]//Flatten (* G. C. Greubel, Feb 25 2023 *)
  • SageMath
    flatten([[binomial(n+2,k+1)-1 for k in range(n+1)] for n in range(14)]) # G. C. Greubel, Feb 25 2023

Formula

T(n, k) = T(n-1, k) + T(n-1, k-1) + 1, T(0, 0)=1. - Ralf Stephan, Jan 23 2005
G.f.: 1 / ((1-x)*(1-x*y)*(1-x*(1+y))). - Ralf Stephan, Jan 24 2005
T(n, k) = Sum_{j=0..k} Sum_{m=j..j+(n-k)} binomial(m, j). - Florian Kleedorfer (florian.kleedorfer(AT)austria.fm), May 23 2005
T(n, k) = binomial(n+2, k+1) - 1. - G. C. Greubel, Feb 25 2023

Extensions

More terms from Erich Friedman
Offset fixed by Reinhard Zumkeller, Apr 10 2012

A062988 a(n) = binomial(n+6,5) - 1.

Original entry on oeis.org

5, 20, 55, 125, 251, 461, 791, 1286, 2001, 3002, 4367, 6187, 8567, 11627, 15503, 20348, 26333, 33648, 42503, 53129, 65779, 80729, 98279, 118754, 142505, 169910, 201375, 237335, 278255, 324631
Offset: 0

Views

Author

Wolfdieter Lang, Jul 12 2001

Keywords

Comments

In the Frey-Sellers reference this sequence is called {(n+2) over 5}_{4}, n >= 0.

Crossrefs

Sixth column (r=5) of FS(5) staircase array A062985.
A column of triangle A014473.

Programs

  • Magma
    [Binomial(n+6,5) -1: n in [0..40]]; // G. C. Greubel, Apr 25 2024
    
  • Maple
    [seq(binomial(n+6,5)-1, n=0..35)]; # Zerinvary Lajos, Nov 25 2006
  • Mathematica
    Binomial[Range[6,45],5] -1 (* G. C. Greubel, Apr 25 2024 *)
  • PARI
    { for (n=0, 1000, write("b062988.txt", n, " ", binomial(n + 6, 5) - 1) ) } \\ Harry J. Smith, Aug 15 2009
    
  • SageMath
    [binomial(n+6,5) -1 for n in range(41)] # G. C. Greubel, Apr 25 2024

Formula

a(n) = A062985(n+2, 5).
a(n) = (n+1)*(n^4 + 19*n^3 + 136*n^2 + 444*n + 600)/5!.
G.f.: N(5;1, x)/(1-x)^6 with N(5;1, x)= 5 - 10*x + 10*x^2 - 5*x^3 + x^4 = (1-(1-x)^5)/x, polynomial of second row of A062986.
E.g.f.: (1/120)*(600 + 1800*x + 1200*x^2 + 300*x^3 + 30*x^4 + x^5)*exp(x). - G. C. Greubel, Apr 25 2024

A322938 a(n) = binomial(2*n + 2, n + 2) - 1.

Original entry on oeis.org

0, 3, 14, 55, 209, 791, 3002, 11439, 43757, 167959, 646645, 2496143, 9657699, 37442159, 145422674, 565722719, 2203961429, 8597496599, 33578000609, 131282408399, 513791607419, 2012616400079, 7890371113949, 30957699535775, 121548660036299, 477551179875951
Offset: 0

Views

Author

Peter Luschny, Feb 13 2019

Keywords

Crossrefs

Cf. A001791, A014473, A030662 (d=0), A010763 (d=1), this sequence (d=2).

Programs

  • Magma
    [Binomial(2*n+2,n+2) -1: n in [0..30]]; // G. C. Greubel, Apr 22 2024
    
  • Maple
    aList := proc(len) local gf, ser; assume(Im(x) > 0);
    gf := (2*x^2 - x + 1)/(2*(x - 1)*x^2) - (I*(2*x - 1))/(2*x^2*sqrt(4*x - 1));
    ser := series(gf, x, len+4):
    seq(coeff(ser, x, n), n=0..len) end: lprint(aList(25));
  • Mathematica
    Table[Binomial[2 n + 2, n + 2] - 1, {n, 0, 25}]
  • SageMath
    [binomial(2*n+2,n+2) - 1 for n in range(31)] # G. C. Greubel, Apr 22 2024

Formula

Let G(x) = (2*x^2-x+1)/(2*(x-1)*x^2)-(I*(2*x-1))/(2*x^2*sqrt(4*x-1)) with Im(x) > 0, then a(n) = [x^n] G(x). The generating function G(x) satisfies the differential equation 9*x - 16*x^2 + 4*x^3 = (8*x^5 - 22*x^4 + 21*x^3 - 8*x^2 + x)*diff(G(x), x) + (12*x^4 - 36*x^3 + 38*x^2 - 16*x + 2)*G(x).
From Peter Bala, Feb 25 2022: (Start)
a(n) = Sum_{k = 0..n+1} binomial(n+k,k+1).
a(n) = Sum_{k = 0..n-1} binomial(n+k+2,k+1).
More generally, Sum_{k = 0..n+m} binomial(n+k,k+1) = Sum_{k = 0..n-1} binomial(n+k+m+1,k+1) = binomial(2*n+m+1,n) - 1. (End)
a(n) = A001791(n+1) - 1. - Hugo Pfoertner, Feb 26 2022
a(n) = n/(n+2) * binomial(2*n+2, n+1) * Sum_{k = 0..n+1} 1/binomial(n+k+1, k). - Peter Bala, Aug 05 2025
Showing 1-10 of 13 results. Next