cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

User: Edward Jiang

Edward Jiang's wiki page.

Edward Jiang has authored 4 sequences.

A230767 Continued fraction expansion of Mertens' constant (A077761).

Original entry on oeis.org

0, 3, 1, 4, 1, 2, 5, 2, 1, 1, 1, 1, 13, 4, 2, 4, 2, 1, 33, 296, 2, 1, 5, 19, 1, 5, 1, 1, 1, 1, 1, 12, 12, 9, 1, 8, 4, 10, 2, 1, 1, 3, 1, 1, 1, 1, 2, 2, 2, 1, 1, 1, 2, 8, 1, 4, 2, 1, 6, 1, 1, 1, 1, 1, 2, 5, 1, 3, 4, 6, 5, 1, 4, 1, 23
Offset: 0

Author

Edward Jiang, Oct 29 2013

Keywords

Crossrefs

Cf. A077761 (decimal expansion).

Programs

  • Mathematica
    $MaxExtraPrecision = 400; ContinuedFraction[N[EulerGamma + NSum[(MoebiusMu[m]/m)*Log[N[Zeta[m], 120]], {m, 2, 1000}, Method -> "EulerMaclaurin", AccuracyGoal -> 120, NSumTerms -> 1000, PrecisionGoal -> 120, WorkingPrecision -> 120], 71]] (* Michael De Vlieger, May 28 2015, after Jean-François Alcover at A077761 *)
  • PARI
    a()=my(e=precision(2.>>(32*ceil(default(realprecision)*38539962/371253907)) ,9),t,s=Euler,n=1); while((t=log(zeta(n++))/n)>e, s+=moebius(n)*t); t=contfrac(s+moebius(n)*t); t[1..#t-1] \\ Charles R Greathouse IV, May 27 2015

Extensions

a(19) and onward corrected by Charles R Greathouse IV, May 27 2015
Offset changed by Andrew Howroyd, Aug 08 2024

A212305 Continued fraction expansion of Pi + Euler gamma or Euler-Mascheroni Constant.

Original entry on oeis.org

3, 1, 2, 1, 1, 3, 1, 15, 1, 26, 1, 5, 3, 2, 1, 3, 3, 10, 1, 2, 1, 1, 3, 5, 1, 20, 1, 1, 2, 1, 2, 1, 1, 1, 1, 3, 6, 1, 1, 16, 3, 1, 1, 1, 1, 2, 1, 2, 5, 1, 1, 2, 2, 1, 41, 7, 2, 1, 1, 1, 7, 4, 3, 2, 2, 6, 5, 7, 7, 6, 1, 29, 5, 2, 20, 4, 1, 149, 2, 2, 1, 1, 1, 4, 13, 1, 1, 6, 15, 2, 13, 2, 1, 19, 2
Offset: 1

Author

Edward Jiang, Oct 24 2013

Keywords

Programs

  • PARI
    contfrac(Pi+Euler)

A212316 Continued fraction expansion A074760.

Original entry on oeis.org

0, 43, 3, 2, 1, 4, 1, 1, 9, 3, 4, 1, 1, 2, 1, 14, 5, 1, 2, 7, 1, 10, 1, 4, 1, 1, 1, 2, 4, 8, 1, 274, 1, 1, 1, 4, 1, 9, 2, 1, 1, 2, 1, 1, 1, 5, 7, 2, 9, 1, 2, 9, 1, 2, 3, 153, 1, 1, 7, 2, 3, 8, 1, 12, 1, 2, 2, 113, 63, 2, 1, 1, 7, 12, 1, 5, 2
Offset: 0

Author

Edward Jiang, Oct 24 2013

Keywords

Crossrefs

Cf. A074760.

Programs

  • PARI
    contfrac(Euler/2 - (log(Pi))/2 - log(2) + 1)

A230581 Numbers k such that k^10 - k - 1 is prime.

Original entry on oeis.org

2, 4, 5, 6, 7, 14, 22, 25, 40, 47, 50, 57, 60, 69, 71, 76, 102, 107, 111, 114, 127, 137, 146, 152, 172, 189, 196, 197, 207, 212, 231, 251, 267, 277, 284, 291, 294, 296, 307, 309, 316, 319, 324, 371, 386, 392, 397, 412, 414, 445, 447, 467, 481, 494, 524, 527
Offset: 1

Author

Edward Jiang, Oct 23 2013

Keywords

Programs

  • Maple
    filter:= n -> isprime(n^10-n-1):
    select(filter, [$1..1000]); # Robert Israel, May 15 2025
  • Mathematica
    Select[Range[600],PrimeQ[#^10-#-1]&] (* Harvey P. Dale, Aug 20 2021 *)
  • PARI
    for(n=1,10^3,if(isprime(n^10-n-1),print1(n,", "))); \\ Joerg Arndt, Oct 24 2013