A210391
Number A(n,k) of semistandard Young tableaux over all partitions of n with maximal element <= k; square array A(n,k), n>=0, k>=0, read by antidiagonals.
Original entry on oeis.org
1, 1, 0, 1, 1, 0, 1, 2, 1, 0, 1, 3, 4, 1, 0, 1, 4, 9, 6, 1, 0, 1, 5, 16, 19, 9, 1, 0, 1, 6, 25, 44, 39, 12, 1, 0, 1, 7, 36, 85, 116, 69, 16, 1, 0, 1, 8, 49, 146, 275, 260, 119, 20, 1, 0, 1, 9, 64, 231, 561, 751, 560, 189, 25, 1, 0
Offset: 0
Square array A(n,k) begins:
1, 1, 1, 1, 1, 1, 1, ...
0, 1, 2, 3, 4, 5, 6, ...
0, 1, 4, 9, 16, 25, 36, ...
0, 1, 6, 19, 44, 85, 146, ...
0, 1, 9, 39, 116, 275, 561, ...
0, 1, 12, 69, 260, 751, 1812, ...
0, 1, 16, 119, 560, 1955, 5552, ...
Rows n=0-10 give:
A000012,
A001477,
A000290,
A005900,
A139594,
A210427,
A210428,
A210429,
A210430,
A210431,
A210432.
-
# First program:
h:= (l, k)-> mul(mul((k+j-i)/(1+l[i] -j +add(`if`(l[t]>=j, 1, 0)
, t=i+1..nops(l))), j=1..l[i]), i=1..nops(l)):
g:= proc(n, i, k, l)
`if`(n=0, h(l, k), `if`(i<1, 0, g(n, i-1, k, l)+
`if`(i>n, 0, g(n-i, i, k, [l[], i]))))
end:
A:= (n, k)-> `if`(n=0, 1, g(n, n, k, [])):
seq(seq(A(n, d-n), n=0..d), d=0..12);
# second program:
gf:= k-> 1/((1-x)^k*(1-x^2)^(k*(k-1)/2)):
A:= (n, k)-> coeff(series(gf(k), x, n+1), x, n):
seq(seq(A(n, d-n), n=0..d), d=0..12);
-
(* First program: *)
h[l_, k_] := Product[Product[(k+j-i)/(1+l[[i]]-j + Sum[If[l[[t]] >= j, 1, 0], {t, i+1, Length[l]}]), {j, 1, l[[i]]}], {i, 1, Length[l]}]; g [n_, i_, k_, l_] := If[n == 0, h[l, k], If[i < 1, 0, g[n, i-1, k, l] + If[i > n, 0, g[n-i, i, k, Append[l, i]]]]]; a[n_, k_] := If[n == 0, 1, g[n, n, k, {}]]; Table[Table[a[n, d-n], {n, 0, d}], {d, 0, 12}] // Flatten
(* second program: *)
gf[k_] := 1/((1-x)^k*(1-x^2)^(k*(k-1)/2)); a[n_, k_] := Coefficient[Series[gf[k], {x, 0, n+1}], x, n]; Table[Table[a[n, d-n], {n, 0, d}], {d, 0, 12}] // Flatten (* Jean-François Alcover, Dec 09 2013, translated from Maple *)
A001753
Expansion of 1/((1+x)*(1-x)^6).
Original entry on oeis.org
1, 5, 16, 40, 86, 166, 296, 496, 791, 1211, 1792, 2576, 3612, 4956, 6672, 8832, 11517, 14817, 18832, 23672, 29458, 36322, 44408, 53872, 64883, 77623, 92288, 109088, 128248, 150008, 174624, 202368, 233529
Offset: 0
There are 5 symmetric nonnegative integer 5 X 5 matrices with sum of elements equal to 4 under action of D_4:
[1 0 0 0 1] [0 0 1 0 0] [0 0 0 0 0] [0 0 0 0 0] [0 0 0 0 0]
[0 0 0 0 0] [0 0 0 0 0] [0 1 0 1 0] [0 0 1 0 0] [0 0 0 0 0]
[0 0 0 0 0] [1 0 0 0 1] [0 0 0 0 0] [0 1 0 1 0] [0 0 4 0 0]
[0 0 0 0 0] [0 0 0 0 0] [0 1 0 1 0] [0 0 1 0 0] [0 0 0 0 0]
[1 0 0 0 1] [0 0 1 0 0] [0 0 0 0 0] [0 0 0 0 0] [0 0 0 0 0].
-
[(4*n^5+70*n^4+460*n^3+1400*n^2+1936*n+945)/960+(-1)^n/64: n in [0..40]]; // Vincenzo Librandi, Aug 15 2011
-
CoefficientList[Series[1/((1+x)*(1-x)^6), {x, 0, 50}], x] (* G. C. Greubel, Nov 22 2017 *)
LinearRecurrence[{5,-9,5,5,-9,5,-1},{1,5,16,40,86,166,296},40] (* Harvey P. Dale, Jun 05 2021 *)
-
a(n)=(4*n^5+70*n^4+460*n^3+1400*n^2+1936*n)\/960+1 \\ Charles R Greathouse IV, Apr 17 2012
A096338
a(n) = (2/(n-1))*a(n-1) + ((n+5)/(n-1))*a(n-2) with a(0)=0 and a(1)=1.
Original entry on oeis.org
0, 1, 2, 6, 10, 20, 30, 50, 70, 105, 140, 196, 252, 336, 420, 540, 660, 825, 990, 1210, 1430, 1716, 2002, 2366, 2730, 3185, 3640, 4200, 4760, 5440, 6120, 6936, 7752, 8721, 9690, 10830, 11970, 13300, 14630, 16170, 17710, 19481, 21252, 23276, 25300, 27600
Offset: 0
- Vincenzo Librandi, Table of n, a(n) for n = 0..1000
- Dragomir Z. Djokovic, Poincaré series [or Poincare series] of some pure and mixed trace algebras of two generic matrices, arXiv:math/0609262 [math.AC], 2006. See Table 3.
- Brian Hopkins and Aram Tangboonduangjit, Water Cells in Compositions of 1s and 2s, arXiv:2412.11528 [math.CO], 2024. See p. 3.
- Jia Huang, Partially Palindromic Compositions, J. Int. Seq. (2023) Vol. 26, Art. 23.4.1. See p. 4, 19.
- M. Navascues and T. Vertesi, The Structure of Matrix Product States, arXiv preprint arXiv:1509.04507 [quant-ph], 2015-2018.
- Miguel Navascués and Tamás Vértesi, Bond dimension witnesses and the structure of homogeneous matrix product states, Quantum 2 (2018): 50.
- Index entries for linear recurrences with constant coefficients, signature (2,2,-6,0,6,-2,-2,1).
-
A096338:=n->-(floor(n/2)+1)*(floor(n/2)+2)*(floor(n/2)+3)*(3*floor(n/2)-2*n)/12; seq(A096338(k),k=0..100); # Wesley Ivan Hurt, Oct 04 2013
-
t = {0, 1}; Do[AppendTo[t, (2/(n - 1))*t[[-1]] + ((n + 5)/(n - 1))*t[[-2]]], {n, 2, 50}]; t (* T. D. Noe, Oct 08 2013 *)
CoefficientList[Series[x/((1 - x)^2*(1 - x^2)^3), {x, 0, 45}], x] (* or *)
Nest[Append[#1, (2/(#2 - 1))*#1[[-1]] + ((#2 + 5)/(#2 - 1))*#1[[-2]] ] & @@ {#, Length@ #} &, {0, 1}, 44] (* Michael De Vlieger, May 30 2018 *)
A005995
Alkane (or paraffin) numbers l(8,n).
Original entry on oeis.org
1, 3, 12, 28, 66, 126, 236, 396, 651, 1001, 1512, 2184, 3108, 4284, 5832, 7752, 10197, 13167, 16852, 21252, 26598, 32890, 40404, 49140, 59423, 71253, 85008, 100688, 118728, 139128, 162384, 188496, 218025, 250971, 287964, 329004, 374794, 425334, 481404, 543004
Offset: 0
A060099
G.f.: 1/((1-x^2)^3*(1-x)^4).
Original entry on oeis.org
1, 4, 13, 32, 71, 140, 259, 448, 742, 1176, 1806, 2688, 3906, 5544, 7722, 10560, 14223, 18876, 24739, 32032, 41041, 52052, 65429, 81536, 100828, 123760, 150892, 182784, 220116, 263568, 313956, 372096, 438957, 515508, 602889, 702240, 814891, 942172, 1085623
Offset: 0
- B. Broer, Hilbert series for modules of covariants, in Algebraic Groups and Their Generalizations..., Proc. Sympos. Pure Math., 56 (1994), Part I, 321-331. See p. 329.
- Peter J. C. Moses, Table of n, a(n) for n = 0..9999
- Jia Huang, Partially Palindromic Compositions, J. Int. Seq. (2023) Vol. 26, Art. 23.4.1. See pp. 4, 20.
- Index entries for linear recurrences with constant coefficients, signature (4,-3,-8,14,0,-14,8,3,-4,1).
Cf.
A001752 (for the similar series 1/((1-x)^4*(1-x^2))).
Cf.
A028346 (for the similar series 1/((1-x)^4*(1-x^2)^2)).
-
a[n_]:=If[OddQ[n],((1+n) (3+n) (5+n)^2 (7+n) (9+n))/5760,((2+n) (4+n) (6+n) (8+n) (15+10 n+n^2))/5760]; Map[a,Range[0,100]] (* Peter J. C. Moses, Mar 24 2013 *)
CoefficientList[Series[1/((1-x^2)^3*(1-x)^4),{x,0,100}],x] (* Peter J. C. Moses, Mar 24 2013 *)
LinearRecurrence[{4,-3,-8,14,0,-14,8,3,-4,1},{1,4,13,32,71,140,259,448,742,1176},40] (* Harvey P. Dale, Apr 06 2018 *)
A164680
Expansion of x/((1-x)^3*(1-x^2)^3*(1-x^3)).
Original entry on oeis.org
1, 3, 9, 20, 42, 78, 139, 231, 372, 573, 861, 1254, 1791, 2499, 3432, 4629, 6162, 8085, 10492, 13455, 17094, 21503, 26832, 33201, 40795, 49764, 60333, 72687, 87096, 103785, 123075, 145236, 170646, 199626, 232617, 269997, 312277, 359898, 413448, 473438
Offset: 1
To calculate a(3), we consider the first three terms of A001399 = (1 1 2...)
and the first three terms of A006918 = (1 2 5 ...), to get the convolved a(3) = 1*5+1*2+2*1 = 9.
- G. C. Greubel, Table of n, a(n) for n = 1..1000
- Index entries for Molien series
- Index entries for linear recurrences with constant coefficients, signature (3,0,-7,3,6,0,-6,-3,7,0,-3,1).
For G2, the corresponding sequence is
A001399.
For F4, the corresponding sequence is
A115264.
For E7, the corresponding sequence is
A210068.
For E8, the corresponding sequence is
A045513.
See
A210634 for a closely related sequence.
-
R:=PowerSeriesRing(Integers(), 40); Coefficients(R!( 1/((1-x)^3*(1-x^2)^3*(1-x^3)) )); // G. C. Greubel, Jan 13 2020
-
seq(coeff(series(x/((1-x)^3*(1-x^2)^3*(1-x^3)), x, n+1), x, n), n = 1..40); # G. C. Greubel, Jan 13 2020
-
Rest@CoefficientList[Series[x/((1-x)^3*(1-x^2)^3*(1-x^3)), {x,0,40}], x] (* G. C. Greubel, Jan 13 2020 *)
LinearRecurrence[{3,0,-7,3,6,0,-6,-3,7,0,-3,1},{1,3,9,20,42,78,139,231,372,573,861,1254},40] (* Harvey P. Dale, Aug 03 2025 *)
-
Vec(1/(1-x)^3/(1-x^2)^3/(1-x^3)+O(x^40)) \\ Charles R Greathouse IV, Sep 23 2012
-
x=PowerSeriesRing(QQ, 'x', 40).gen()
1/((1-x)^3*(1-x^2)^3*(1-x^3))
A059594
Convolution triangle based on A008619 (positive integers repeated).
Original entry on oeis.org
1, 1, 1, 2, 2, 1, 2, 5, 3, 1, 3, 8, 9, 4, 1, 3, 14, 19, 14, 5, 1, 4, 20, 39, 36, 20, 6, 1, 4, 30, 69, 85, 60, 27, 7, 1, 5, 40, 119, 176, 160, 92, 35, 8, 1, 5, 55, 189, 344, 376, 273, 133, 44, 9, 1, 6, 70, 294, 624, 820, 714, 434
Offset: 0
{1}; {1,1}; {2,2,1}; {2,5,3,1}; ...
Fourth row polynomial (n=3): p(3,x)= 2 + 5*x + 3*x^2 + x^3.
-
t[n_, m_] := Sum[Sum[Binomial[j, n-m-3*k+2*j]*(-1)^(j-k)*Binomial[k, j], {j, 0, k}]*Binomial[m+k, m], {k, 0, n-m}]; Table[t[n, m], {n, 0, 10}, {m, 0, n}] // Flatten (* Jean-François Alcover, May 27 2013, after Vladimir Kruchinin *)
-
T(n,m):=sum((sum(binomial(j,n-m-3*k+2*j)*(-1)^(j-k)*binomial(k,j),j,0,k)) *binomial(m+k,m),k,0,n-m); /* Vladimir Kruchinin, Dec 14 2011 */
A038165
G.f.: 1/((1-x)*(1-x^2))^5.
Original entry on oeis.org
1, 5, 20, 60, 160, 376, 820, 1660, 3190, 5830, 10252, 17380, 28600, 45760, 71500, 109252, 163735, 240955, 348920, 497640, 700128, 972400, 1334840, 1812200, 2435420, 3241628, 4276520, 5594360, 7261040, 9354080, 11966504, 15206840
Offset: 0
- Index entries for linear recurrences with constant coefficients, signature (5, -5, -15, 35, 1, -65, 45, 45, -65, 1, 35, -15, -5, 5, -1).
-
CoefficientList[Series[1/((1-x)(1-x^2))^5,{x,0,35}],x] (* Harvey P. Dale, Apr 02 2011 *)
A181477
a(n) has generating function 1/((1-x)^k*(1-x^2)^(k*(k-1)/2)) for k=5.
Original entry on oeis.org
1, 5, 25, 85, 275, 751, 1955, 4615, 10460, 22220, 45628, 89420, 170340, 313140, 562020, 980628, 1676370, 2800410, 4596290, 7399930, 11732006, 18297950, 28155910, 42716750, 64037980, 94823756, 138922300, 201325900, 288988100
Offset: 0
a(3)=85 since the Schur polynomial of 5 variables and degree 4 starts off as x[1]*x[2]*x[3]*x[4] + x[1]*x[2]*x[3]*x[5] + ... + x[4]*x[5]^3 + x[5]^4. The exponents collect to the padded partitions of 4 as 5*p(1) + 40*p(2) + 30*p(3) + 150*p(4) + 50*p(5) where p(1) is the lexicographically first padded partition of 4: {4,0,0,0}, a coded form of monomials x[i]^4, and p(5) stands for {1,1,1,1}, coding x[i]x[j]x[k]x[l] with all indices different.
-
Tr[toz/@(Function[q,PadRight[q,k]]/@ (TransposePartition/@ Partitions[n,k]))/. w[arg__] -> 1 ]; with toz[p_]:=Block[{a,q,e,w}, u1=Expand[q Together[Expand[schur[p]]] +q a]/. Plus-> List ; u2=u1/. Times->w /. q->Sequence[]/. w[i_Integer, r__]-> i w[r] /. x[]^(e:1) ->e ; u3=Plus@@ u2/. w[arg__]:> Reverse@ Sort@ w[arg] /. w[a]->0 ]; and schur[p_]:=Block[{le=Length[p],n=Tr[p]}, Together[Expand[Factor[Det[Outer[ #2^#1&,p+le-Range[le] , Array[x,le]]]]/Factor[Det[Outer[ #2^#1&,Range[le-1,0,-1] , Array[x,le]]]] ]] ]
A038166
G.f.: 1/((1-x)*(1-x^2))^6.
Original entry on oeis.org
1, 6, 27, 92, 273, 714, 1715, 3816, 8007, 15938, 30381, 55692, 98735, 169806, 284349, 464672, 742950, 1164228, 1791426, 2710344, 4037670, 5928988, 8591154, 12294672, 17392258, 24337404, 33711510, 46251016, 62886162, 84779748
Offset: 0
- Index entries for linear recurrences with constant coefficients, signature (6, -9, -16, 60, -24, -116, 144, 66, -220, 66, 144, -116, -24, 60, -16, -9, 6, -1).
-
A038166 := proc(n)
add( A038163(n-i)*A038163(i),i=0..n) ;
end proc:
seq(A038166(n),n=0..30) ;# R. J. Mathar, Feb 22 2021
-
CoefficientList[Series[1/((1-x)(1-x^2))^6,{x,0,40}],x] (* or *) LinearRecurrence[ {6,-9,-16,60,-24,-116,144,66,-220,66,144,-116,-24,60,-16,-9,6,-1},{1,6,27,92,273,714,1715,3816,8007,15938,30381,55692,98735,169806,284349,464672,742950,1164228},40] (* Harvey P. Dale, Jun 10 2013 *)
Showing 1-10 of 16 results.
Next
Comments