A005900
Octahedral numbers: a(n) = n*(2*n^2 + 1)/3.
Original entry on oeis.org
0, 1, 6, 19, 44, 85, 146, 231, 344, 489, 670, 891, 1156, 1469, 1834, 2255, 2736, 3281, 3894, 4579, 5340, 6181, 7106, 8119, 9224, 10425, 11726, 13131, 14644, 16269, 18010, 19871, 21856, 23969, 26214, 28595, 31116, 33781, 36594, 39559, 42680
Offset: 0
G.f. = x + 6*x^2 + 19*x^3 + 44*x^4 + 85*x^5 + 146*x^6 + 231*x^7 + ...
- John H. Conway and Richard K. Guy, The Book of Numbers, New York: Springer-Verlag, 1996. See p. 50.
- H. S. M. Coxeter, Polyhedral numbers, pp. 25-35 of R. S. Cohen, J. J. Stachel and M. W. Wartofsky, eds., For Dirk Struik: Scientific, historical and political essays in honor of Dirk J. Struik, Reidel, Dordrecht, 1974.
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
- T. D. Noe, Table of n, a(n) for n = 0..1000
- X. Acloque, Polynexus Numbers and other mathematical wonders [broken link]
- Karoly Bezdek, Contact numbers for congruent sphere packings, arXiv:1102.1198 [math.MG], 2011.
- Matteo Cavaleri and Alfredo Donno, Some degree and distance-based invariants of wreath products of graphs, arXiv:1805.08989 [math.CO], 2018.
- Y-h. Guo, Some n-Color Compositions, J. Int. Seq. 15 (2012) 12.1.2, eq (5), m=2.
- Milan Janjic, Two Enumerative Functions
- Milan Janjić, On Restricted Ternary Words and Insets, arXiv:1905.04465 [math.CO], 2019.
- Muhammad Fatih Killik and Bünyamin Şahi̇n, Further Results on Level Matrix, Int'l J. Math. Combin. (2024) Vol 4, 68-74. See p. 71.
- Hyun Kwang Kim, On Regular Polytope Numbers, Proc. Amer. Math. Soc., 131 (2002), 65-75.
- Hankyung Ko, Volodymyr Mazorchuk and Rafael Mrđen, Join operation for the Bruhat order and Verma modules, arXiv:2109.01067 [math.RT], 2021. See Remark 5.10 p. 19.
- A. Lascoux and M.-P. Schützenberger, Treillis et bases des groupes de Coxeter, Electron. J. Combin. 3 (1996), #R27.
- T. P. Martin, Shells of atoms, Phys. Reports, 273 (1996), 199-241, eq. (11).
- J. K. Merikoski, R. Kumar and R. A. Rajput, Upper bounds for the largest eigenvalue of a bipartite graph, Electronic Journal of Linear Algebra ISSN 1081-3810, A publication of the International Linear Algebra Society, Volume 26, pp. 168-176, April 2013.
- Simon Plouffe, Approximations de séries génératrices et quelques conjectures, Dissertation, Université du Québec à Montréal, 1992; arXiv:0911.4975 [math.NT], 2009.
- Simon Plouffe, 1031 Generating Functions, Appendix to Thesis, Montreal, 1992
- B. K. Teo and N. J. A. Sloane, Magic numbers in polygonal and polyhedral clusters, Inorgan. Chem. 24 (1985), 4545-4558.
- Eric Weisstein's World of Mathematics, Octahedral Number.
- Index entries for two-way infinite sequences
- Index entries for linear recurrences with constant coefficients, signature (4,-6,4,-1).
1/12*t*(n^3-n)+n for t = 2, 4, 6, ... gives
A004006,
A006527,
A006003,
A005900,
A004068,
A000578,
A004126,
A000447,
A004188,
A004466,
A004467,
A007588,
A062025,
A063521,
A063522,
A063523.
-
a005900 n = sum $ zipWith (*) odds $ reverse odds
where odds = take n a005408_list
a005900_list = scanl (+) 0 a001844_list
-- Reinhard Zumkeller, Jun 16 2013, Apr 04 2012
-
[n*(2*n^2+1)/3: n in [0..50]]; // Wesley Ivan Hurt, Sep 11 2015
-
I:=[0,1,6,19]; [n le 4 select I[n] else 4*Self(n-1)-6*Self(n-2)+4*Self(n-3)-Self(n-4): n in [1..50]]; // Vincenzo Librandi, Sep 12 2015
-
al:=proc(s,n) binomial(n+s-1,s); end; be:=proc(d,n) local r; add( (-1)^r*binomial(d-1,r)*2^(d-1-r)*al(d-r,n), r=0..d-1); end; [seq(be(3,n), n=0..100)];
A005900:=(z+1)**2/(z-1)**4; # Simon Plouffe in his 1992 dissertation
with(combinat): seq(fibonacci(4,2*n)/12, n=0..40); # Zerinvary Lajos, Apr 21 2008
-
Table[(2n^3+n)/3, {n,0,40}] (* or *) LinearRecurrence[{4,-6,4,-1}, {0,1,6,19},50] (* Harvey P. Dale, Oct 10 2013 *)
CoefficientList[Series[x (1 + x)^2/(1 - x)^4, {x, 0, 45}], x] (* Vincenzo Librandi, Sep 12 2015 *)
-
makelist(n*(2*n^2+1)/3, n, 0, 20); /* Martin Ettl, Jan 07 2013 */
-
{a(n) = n*(2*n^2+1)/3};
-
concat([0],Vec(x*(1 + x)^2/(1 - x)^4 + O(x^50))) \\ Indranil Ghosh, Mar 16 2017
-
def a(n): return n*(2*n*n + 1)//3
print([a(n) for n in range(41)]) # Michael S. Branicky, Sep 03 2021
A296188
Number of normal semistandard Young tableaux whose shape is the integer partition with Heinz number n.
Original entry on oeis.org
1, 1, 2, 1, 4, 4, 8, 1, 6, 12, 16, 6, 32, 32, 28, 1, 64, 16, 128, 24, 96, 80, 256, 8, 44, 192, 22, 80, 512, 96, 1024, 1, 288, 448, 224, 30, 2048, 1024, 800, 40, 4096, 400, 8192, 240, 168, 2304, 16384, 10, 360, 204, 2112, 672, 32768, 68, 832, 160, 5376, 5120
Offset: 1
The a(9) = 6 tableaux:
1 3 1 2 1 2 1 2 1 1 1 1
2 4 3 4 3 3 2 3 2 3 2 2
- Richard P. Stanley, Enumerative Combinatorics Volume 2, Cambridge University Press, 1999, Chapter 7.10.
Cf.
A000085,
A001222,
A056239,
A063834,
A112798,
A122111,
A138178,
A153452,
A191714,
A210391,
A228125,
A296150,
A296560,
A296561,
A299202,
A299966,
A300056,
A300121.
-
conj[y_List]:=If[Length[y]===0,y,Table[Length[Select[y,#>=k&]],{k,1,Max[y]}]];
conj[n_Integer]:=Times@@Prime/@conj[If[n===1,{},Join@@Cases[FactorInteger[n]//Reverse,{p_,k_}:>Table[PrimePi[p],{k}]]]];
ssyt[n_]:=If[n===1,1,Sum[ssyt[n/q*Times@@Cases[FactorInteger[q],{p_,k_}:>If[p===2,1,NextPrime[p,-1]^k]]],{q,Rest[Divisors[n]]}]];
Table[ssyt[conj[n]],{n,50}]
A038163
G.f.: 1/((1-x)*(1-x^2))^3.
Original entry on oeis.org
1, 3, 9, 19, 39, 69, 119, 189, 294, 434, 630, 882, 1218, 1638, 2178, 2838, 3663, 4653, 5863, 7293, 9009, 11011, 13377, 16107, 19292, 22932, 27132, 31892, 37332, 43452, 50388, 58140, 66861, 76551, 87381, 99351, 112651, 127281
Offset: 0
- Alois P. Heinz, Table of n, a(n) for n = 0..1000
- Index entries for linear recurrences with constant coefficients, signature (3,0,-8,6,6,-8,0,3,-1).
-
import Data.List (inits, intersperse)
a038163 n = a038163_list !! n
a038163_list = map
(sum . zipWith (*) (intersperse 0 $ tail a000217_list) . reverse) $
tail $ inits $ tail a000217_list where
-- Reinhard Zumkeller, Feb 27 2015
-
G := 1/((1-x)^3*(1-x^2)^3): Gser := series(G, x = 0, 42): seq(coeff(Gser, x, n), n = 0 .. 37); # Emeric Deutsch, Jun 26 2009
# alternative
A038163 := proc(n)
(4*n^5+90*n^4+760*n^3+2970*n^2+5266*n+3285+(-1)^n*(30*n^2+270*n+555))/3840 ;
end proc:
seq(A038163(n),n=0..30) ; # R. J. Mathar, Feb 22 2021
-
CoefficientList[Series[1/((1-x)*(1-x^2))^3, {x, 0, 40}], x] (* Jean-François Alcover, Mar 11 2014 *)
LinearRecurrence[{3,0,-8,6,6,-8,0,3,-1},{1,3,9,19,39,69,119,189,294},50] (* Harvey P. Dale, Nov 24 2022 *)
A209673
a(n) = count of monomials, of degree k=n, in the Schur symmetric polynomials s(mu,k) summed over all partitions mu of n.
Original entry on oeis.org
1, 1, 4, 19, 116, 751, 5552, 43219, 366088, 3245311, 30569012, 299662672, 3079276708, 32773002718, 362512238272, 4136737592323, 48773665308176, 591313968267151, 7375591544495636, 94340754464144215, 1237506718985945656, 16608519982801477908, 228013066931927465872
Offset: 0
Cf.
A191714,
A209664,
A209665,
A209666,
A209667,
A209668,
A209669,
A209670,
A209671,
A209672,
A209673.
-
(* see A191714 *)
Tr /@ Table[(stanley[#, l] & /@ Partitions[l]), {l, 11}]
(* or *)
Table[SeriesCoefficient[1/((1-x)^(n*(n+1)/2) * (1+x)^(n*(n-1)/2)), {x, 0, n}], {n, 0, 25}] (* Vaclav Kotesovec, Aug 06 2025 *)
A191714
a(n,k) equals the number of semistandard Young tableaux with shape of a partition of n and maximal element <= k.
Original entry on oeis.org
1, 1, 4, 1, 6, 19, 1, 9, 39, 116, 1, 12, 69, 260, 751, 1, 16, 119, 560, 1955, 5552, 1, 20, 189, 1100, 4615, 15372, 43219, 1, 25, 294, 2090, 10460, 40677, 131131, 366088, 1, 30, 434, 3740, 22220, 100562, 370909, 1168008, 3245311, 1, 36, 630, 6512, 45628, 239316, 1007083, 3570240, 11042199, 30569012, 1, 42, 882, 10868, 89420, 541926, 2596573, 10347864, 35587071, 108535130, 299662672, 1, 49, 1218, 17732, 170340, 1188341, 6466159, 28915056, 110426979, 370661885, 1117689232, 3079276708
Offset: 1
For n=3 and k=2 the SSYT are
par= {3} SSYT= {{1, 1, 1}}, {{2, 1, 1}}, {{2, 2, 1}}, {{2, 2, 2}}
par= {2,1} SSYT= {{2, 1}, {1}}, {{2, 2}, {1}}
par= {1,1,1} SSYT= none
counts 4+2+0 = 6 = a(3,2).
Table begins:
1;
1, 4;
1, 6, 19;
1, 9, 39, 116;
1, 12, 69, 260, 751;
1, 16, 119, 560, 1955, 5552;
1, 20, 189, 1100, 4615, 15372, 43219; ...
-
Needs["Combinatorica`"];
hooklength[(p_)?PartitionQ] := Block[{ferr = (PadLeft[1 + 0*Range[#1], Max[p]] &) /@ p}, DeleteCases[(Rest[FoldList[Plus, 0, #1]] &) /@ ferr + Reverse /@ Reverse[Transpose[(Rest[FoldList[Plus, 0, #1]] &) /@ Reverse[Reverse /@ Transpose[ferr]]]], 0, -1] - 1];
content[(p_)?PartitionQ]:= Block[{le= Max[p], ferr =(PadLeft[1+ 0*Range[#1], Max[p]]&) /@ p}, DeleteCases[ MapIndexed[-le+ Range[le,1,-1]- #1- Tr[#2]&, 0*ferr]*ferr,0,-1]+ le];
stanley[(p_)?PartitionQ, t_Integer] := Times @@ ((t + Flatten[content[p]])/Flatten[hooklength[p]]);
Table[Tr[ stanley[#,k] &/@ Partitions[n] ] , {n,12}, {k,n}]
A138177
Triangle T(n,k) read by rows: number of k X k symmetric matrices with nonnegative integer entries and without zero rows or columns such that sum of all entries is equal to n, n>=1, 1<=k<=n.
Original entry on oeis.org
1, 1, 2, 1, 4, 4, 1, 7, 15, 10, 1, 10, 36, 52, 26, 1, 14, 74, 176, 190, 76, 1, 18, 132, 460, 810, 696, 232, 1, 23, 222, 1060, 2705, 3756, 2674, 764, 1, 28, 347, 2180, 7565, 15106, 17262, 10480, 2620, 1, 34, 525, 4204, 19013, 51162, 83440, 80816, 42732, 9496, 1, 40
Offset: 1
Triangle T(n,k) begins:
1;
1, 2;
1, 4, 4;
1, 7, 15, 10;
1, 10, 36, 52, 26;
1, 14, 74, 176, 190, 76;
1, 18, 132, 460, 810, 696, 232;
1, 23, 222, 1060, 2705, 3756, 2674, 764;
...
- Alois P. Heinz, Rows n = 1..141, flattened
- Richard A. Brualdi, Shi-Mei Ma, Enumeration of involutions by descents and symmetric matrices, European Journal of Combinatorics, vol.43, pp.220-228, (January 2015).
- FindStat - Combinatorial Statistic Finder, Semistandard Young tableaux
- Samantha Dahlberg, Combinatorial Proofs of Identities Involving Symmetric Matrices, arXiv:1410.7356 [math.CO], (27-October-2014)
-
gf:= k-> 1/((1-x)^k*(1-x^2)^(k*(k-1)/2)):
A:= (n, k)-> coeff(series(gf(k), x, n+1), x, n):
T:= (n, k)-> add(A(n, k-i)*(-1)^i*binomial(k, i), i=0..k):
seq(seq(T(n, k), k=1..n), n=1..12); # Alois P. Heinz, Apr 06 2015
-
gf[k_] := 1/((1-x)^k*(1-x^2)^(k*(k-1)/2)); A[n_, k_] := Coefficient[ Series [gf[k], {x, 0, n+1}], x, n]; T[n_, k_] := Sum[(-1)^j*Binomial[k, j]*A[n, k-j], {j, 0, k}]; Table[T[n, k], {n, 1, 12}, {k, 1, n}] // Flatten (* Jean-François Alcover, Jan 31 2016, after Alois P. Heinz *)
A181477
a(n) has generating function 1/((1-x)^k*(1-x^2)^(k*(k-1)/2)) for k=5.
Original entry on oeis.org
1, 5, 25, 85, 275, 751, 1955, 4615, 10460, 22220, 45628, 89420, 170340, 313140, 562020, 980628, 1676370, 2800410, 4596290, 7399930, 11732006, 18297950, 28155910, 42716750, 64037980, 94823756, 138922300, 201325900, 288988100
Offset: 0
a(3)=85 since the Schur polynomial of 5 variables and degree 4 starts off as x[1]*x[2]*x[3]*x[4] + x[1]*x[2]*x[3]*x[5] + ... + x[4]*x[5]^3 + x[5]^4. The exponents collect to the padded partitions of 4 as 5*p(1) + 40*p(2) + 30*p(3) + 150*p(4) + 50*p(5) where p(1) is the lexicographically first padded partition of 4: {4,0,0,0}, a coded form of monomials x[i]^4, and p(5) stands for {1,1,1,1}, coding x[i]x[j]x[k]x[l] with all indices different.
-
Tr[toz/@(Function[q,PadRight[q,k]]/@ (TransposePartition/@ Partitions[n,k]))/. w[arg__] -> 1 ]; with toz[p_]:=Block[{a,q,e,w}, u1=Expand[q Together[Expand[schur[p]]] +q a]/. Plus-> List ; u2=u1/. Times->w /. q->Sequence[]/. w[i_Integer, r__]-> i w[r] /. x[]^(e:1) ->e ; u3=Plus@@ u2/. w[arg__]:> Reverse@ Sort@ w[arg] /. w[a]->0 ]; and schur[p_]:=Block[{le=Length[p],n=Tr[p]}, Together[Expand[Factor[Det[Outer[ #2^#1&,p+le-Range[le] , Array[x,le]]]]/Factor[Det[Outer[ #2^#1&,Range[le-1,0,-1] , Array[x,le]]]] ]] ]
A054498
Number of symmetric nonnegative integer 8 X 8 matrices with sum of elements equal to 4*n, under action of dihedral group D_4.
Original entry on oeis.org
1, 4, 16, 44, 116, 260, 560, 1100, 2090, 3740, 6512, 10868, 17732, 28028, 43472, 65780, 97955, 143000, 205920, 291720, 408408, 563992, 770848, 1041352, 1394068, 1847560, 2428960, 3165400, 4095640, 5258440, 6708064, 8498776, 10705189, 13401916, 16689904
Offset: 0
- Y. Teranishi, Linear Diophantine equations and invariant theory of matrices, in Commutative algebra and combinatorics (Kyoto, 1985), pp. 259-275, Adv. Stud. Pure Math., 11, North-Holland, Amsterdam, 1987. (See p. 273.)
- Alois P. Heinz, Table of n, a(n) for n = 0..1000
- Index entries for linear recurrences with constant coefficients, signature (4,0,-20,20,36,-64,-20,90,-20,-64,36,20,-20,0,4,-1).
A181478
a(n) has generating function 1/((1-x)^k*(1-x^2)^(k*(k-1)/2)) for k=6.
Original entry on oeis.org
1, 6, 36, 146, 561, 1812, 5552, 15372, 40677, 100562, 239316, 541926, 1188341, 2507736, 5149056, 10251560, 19935135, 37790610, 70187260, 127580310, 227779695, 399218820, 688680720, 1169024220, 1956567795, 3228473430, 5260188780, 8462889330, 13461037155
Offset: 0
-
CoefficientList[Series[1/(1-x)^6/(1-x^2)^15,{x,0,30}],x]
A181479
a(n) has generating function 1/((1-x)^k*(1-x^2)^(k*(k-1)/2)) for k=7.
Original entry on oeis.org
1, 7, 49, 231, 1029, 3843, 13573, 43219, 131131, 370909, 1007083, 2596573, 6466159, 15465961, 35906959, 80682553, 176682268, 376497604, 784435036, 1596836164, 3186750028, 6232957588, 11978020684, 22615355476, 42031123204, 76900938268, 138714560068, 246728568604
Offset: 0
-
CoefficientList[Series[1/(1-x)^7/(1-x^2)^21,{x,0,30}],x]
Showing 1-10 of 20 results.
Comments