A093641 Numbers of form 2^i * prime(j), i>=0, j>0, together with 1.
1, 2, 3, 4, 5, 6, 7, 8, 10, 11, 12, 13, 14, 16, 17, 19, 20, 22, 23, 24, 26, 28, 29, 31, 32, 34, 37, 38, 40, 41, 43, 44, 46, 47, 48, 52, 53, 56, 58, 59, 61, 62, 64, 67, 68, 71, 73, 74, 76, 79, 80, 82, 83, 86, 88, 89, 92, 94, 96, 97, 101, 103, 104, 106, 107, 109, 112
Offset: 1
A053529 a(n) = n! * number of partitions of n.
1, 1, 4, 18, 120, 840, 7920, 75600, 887040, 10886400, 152409600, 2235340800, 36883123200, 628929100800, 11769069312000, 230150688768000, 4833164464128000, 105639166144512000, 2464913876705280000, 59606099200327680000, 1525429559126753280000, 40464026199993876480000
Offset: 0
Comments
Commuting permutations: number of ordered pairs (g, h) in Sym(n) such that gh = hg.
Equivalently sum of the order of all normalizers of all cyclic subgroups of Sym(n). - Olivier Gérard, Apr 04 2012
From Gus Wiseman, Jan 16 2019: (Start)
Also the number of Young tableaux with distinct entries from 1 to n, where a Young tableau is an array obtained by replacing the dots in the Ferrers diagram of an integer partition of n with positive integers. For example, the a(3) = 18 tableaux are:
123 213 132 312 231 321
.
12 21 13 31 23 32
3 3 2 2 1 1
.
1 2 1 3 2 3
2 1 3 1 3 2
3 3 2 2 1 1
(End)
References
- R. P. Stanley, Enumerative Combinatorics, Cambridge, Vol. 2, 1999; see Problem 5.12, solution.
Links
- T. D. Noe, Table of n, a(n) for n = 0..200
- M. Holloway, M. Shattuck, Commuting pairs of functions on a finite set, PU.M.A, Volume 24 (2013), Issue No. 1.
- M. Holloway, M. Shattuck, Commuting pairs of functions on a finite set, Research Gate, 2015.
- R. P. Stanley, Pairs with equal squares, Problem 10654, Amer. Math. Monthly, 107 (April 2000), solution p. 368.
- Wikipedia, Young tableau
Crossrefs
Programs
-
Magma
a:= func< n | NumberOfPartitions(n)*Factorial(n) >; [ a(n) : n in [0..25]]; // Vincenzo Librandi, Jan 17 2019
-
Maple
seq(count(Permutation(n))*count(Partition(n)),n=1..20); # Zerinvary Lajos, Oct 16 2006 with(combinat): A053529 := proc(n): n! * numbpart(n) end: seq(A053529(n), n=0..20); # Johannes W. Meijer, Jul 28 2016
-
Mathematica
Table[PartitionsP[n] n!, {n, 0, 20}] (* T. D. Noe, Jun 19 2012 *)
-
PARI
N=66; x='x+O('x^N); Vec(serlaplace(exp(sum(k=1, N, x^k/(1-x^k)/k)))) \\ Joerg Arndt, Apr 16 2010
-
PARI
N=66; x='x+O('x^N); Vec(serlaplace(sum(n=0, N, x^n/prod(k=1,n,1-x^k)))) \\ Joerg Arndt, Jan 29 2011
-
PARI
a(n) = n!*numbpart(n); \\ Michel Marcus, Jul 28 2016
-
Python
from math import factorial from sympy import npartitions def A053529(n): return factorial(n)*npartitions(n) # Chai Wah Wu, Jul 10 2023
Formula
E.g.f: Sum_{n>=0} x^n/(Product_{k=1..n} 1-x^k) = exp(Sum_{n>=1} (x^n/n)/(1-x^n)). - Joerg Arndt, Jan 29 2011
a(n) = Sum{k=1..n} (((n-1)!/(n-k)!)*sigma(k)*a(n-k)), n > 0, and a(0)=1. See A274760. - Johannes W. Meijer, Jul 28 2016
a(n) ~ sqrt(Pi/6)*exp(sqrt(2/3)*Pi*sqrt(n))*n^n/(2*exp(n)*sqrt(n)). - Ilya Gutkovskiy, Jul 28 2016
A138178 Number of symmetric matrices with nonnegative integer entries and without zero rows or columns such that sum of all entries is equal to n.
1, 1, 3, 9, 33, 125, 531, 2349, 11205, 55589, 291423, 1583485, 8985813, 52661609, 319898103, 2000390153, 12898434825, 85374842121, 580479540219, 4041838056561, 28824970996809, 210092964771637, 1564766851282299, 11890096357039749, 92151199272181629
Offset: 0
Comments
Number of normal semistandard Young tableaux of size n, where a tableau is normal if its entries span an initial interval of positive integers. - Gus Wiseman, Feb 23 2018
Examples
a(4) = 33 because there are 1 such matrix of type 1 X 1, 7 matrices of type 2 X 2, 15 of type 3 X 3 and 10 of type 4 X 4, cf. A138177. From _Gus Wiseman_, Feb 23 2018: (Start) The a(3) = 9 normal semistandard Young tableaux: 1 1 2 1 3 1 2 1 1 1 2 3 1 2 2 1 1 2 1 1 1 2 3 2 2 2 3 (End) From _Gus Wiseman_, Nov 14 2018: (Start) The a(4) = 33 matrices: [4] . [30][21][20][11][10][02][01] [01][10][02][11][03][20][12] . [200][200][110][101][100][100][100][100][011][010][010][010][001][001][001] [010][001][100][010][020][011][010][001][100][110][101][100][020][010][001] [001][010][001][100][001][010][002][011][100][001][010][002][100][101][110] . [1000][1000][1000][1000][0100][0100][0010][0010][0001][0001] [0100][0100][0010][0001][1000][1000][0100][0001][0100][0010] [0010][0001][0100][0010][0010][0001][1000][1000][0010][0100] [0001][0010][0001][0100][0001][0010][0001][0100][1000][1000] (End)
Links
- Alois P. Heinz, Table of n, a(n) for n = 0..500
Crossrefs
Programs
-
Maple
gf:= proc(j) local k, n; add(add((-1)^(n-k) *binomial(n, k) *(1-x)^(-k) *(1-x^2)^(-binomial(k, 2)), k=0..n), n=0..j) end: a:= n-> coeftayl(gf(n+1), x=0, n): seq(a(n), n=0..25); # Alois P. Heinz, Sep 25 2008
-
Mathematica
Table[Sum[SeriesCoefficient[1/(2^(k+1)*(1-x)^k*(1-x^2)^(k*(k-1)/2)),{x,0,n}],{k,0,Infinity}],{n,0,20}] (* Vaclav Kotesovec, Jul 03 2014 *) multsubs[set_,k_]:=If[k==0,{{}},Join@@Table[Prepend[#,set[[i]]]&/@multsubs[Drop[set,i-1],k-1],{i,Length[set]}]]; Table[Length[Select[multsubs[Tuples[Range[n],2],n],And[Union[First/@#]==Range[Max@@First/@#],Union[Last/@#]==Range[Max@@Last/@#],Sort[Reverse/@#]==#]&]],{n,5}] (* Gus Wiseman, Nov 14 2018 *)
Formula
G.f.: Sum_{n>=0} Sum_{k=0..n} (-1)^(n-k)*C(n,k)*(1-x)^(-k)*(1-x^2)^(-C(k,2)).
G.f.: Sum_{n>=0} 2^(-n-1)*(1-x)^(-n)*(1-x^2)^(-C(n,2)). - Vladeta Jovovic, Dec 09 2009
Extensions
More terms from Alois P. Heinz, Sep 25 2008
A321765 Irregular triangle read by rows where T(H(u),H(v)) is the coefficient of s(v) in p(u), where H is Heinz number, p is power sum symmetric functions, and s is Schur functions.
1, 1, 1, -1, 1, 1, 1, -1, 1, 1, 0, -1, 1, 0, -1, 1, -1, 1, 2, 1, 1, 2, -1, -1, 1, 1, -1, 0, 0, 1, 1, -1, 0, 0, 1, -1, 1, 1, 0, 1, -1, -1, 1, 0, -1, 0, 0, 1, 0, 0, -1, 1, -1, 1, 0, -1, 1, 0, 0, -1
Offset: 1
Comments
Examples
Triangle begins: 1 1 1 -1 1 1 1 -1 1 1 0 -1 1 0 -1 1 -1 1 2 1 1 2 -1 -1 1 1 -1 0 0 1 1 -1 0 0 1 -1 1 1 0 1 -1 -1 1 0 -1 0 0 1 0 0 -1 1 -1 1 0 -1 1 0 0 -1 For example, row 12 gives: p(211) = s(4) + s(31) - s(211) - s(1111).
Links
- Wikipedia, Symmetric polynomial
A321935 Tetrangle: T(n,H(u),H(v)) is the coefficient of p(v) in S(u), where u and v are integer partitions of n, H is Heinz number, p is the basis of power sum symmetric functions, and S is the basis of augmented Schur functions.
1, 1, 1, -1, 1, 2, 3, 1, -1, 0, 1, 2, -3, 1, 6, 3, 8, 6, 1, 0, 3, -4, 0, 1, -2, -1, 0, 2, 1, 2, -1, 0, -2, 1, -6, 3, 8, -6, 1, 24, 30, 20, 15, 20, 10, 1, -6, 0, -5, 0, 5, 5, 1, 0, -6, 4, 3, -4, 2, 1, 0, 6, -4, 3, -4, -2, 1, 4, 0, 0, -5, 0, 0, 1, -6, 0, 5, 0, 5
Offset: 1
Comments
The Heinz number of an integer partition (y_1, ..., y_k) is prime(y_1) * ... * prime(y_k).
We define the augmented Schur functions to be S(y) = |y|! * s(y) / syt(y), where s is the basis of Schur functions and syt(y) is the number of standard Young tableaux of shape y.
Examples
Tetrangle begins (zeros not shown): (1): 1 . (2): 1 1 (11): -1 1 . (3): 2 3 1 (21): -1 1 (111): 2 -3 1 . (4): 6 3 8 6 1 (22): 3 -4 1 (31): -2 -1 2 1 (211): 2 -1 -2 1 (1111): -6 3 8 -6 1 . (5): 24 30 20 15 20 10 1 (41): -6 -5 5 5 1 (32): -6 4 3 -4 2 1 (221): 6 -4 3 -4 -2 1 (311): 4 -5 1 (2111): -6 5 5 -5 1 (11111): 24 30 20 15 20 10 1 For example, row 14 gives: S(32) = 4p(32) - 6p(41) + 3p(221) - 4p(311) + 2p(2111) + p(11111).
Links
- Wikipedia, Symmetric polynomial
A238690 Let each integer m (1 <= m <= n) be factorized as m = prime_m(1)*prime_m(2)*...*prime_m(bigomega(m)), with the primes sorted in nonincreasing order. Then a(n) is the number of values of m such that each prime_m(i) <= prime_n(i).
1, 2, 3, 3, 4, 5, 5, 4, 6, 7, 6, 7, 7, 9, 9, 5, 8, 9, 9, 10, 12, 11, 10, 9, 10, 13, 10, 13, 11, 14, 12, 6, 15, 15, 14, 12, 13, 17, 18, 13, 14, 19, 15, 16, 16, 19, 16, 11, 15, 16, 21, 19, 17, 14, 18, 17, 24, 21, 18, 19, 19, 23, 22, 7, 22, 24, 20, 22, 27, 23, 21
Offset: 1
Keywords
Comments
Equivalently, a(n) equals the number of values of m such that each value of A238689 T(m,k) <= A238689 T(n,k). (Since the prime factorization of 1 is the empty factorization, we consider each prime_1(i) not to be greater than prime_n(i) for all positive integers n.)
Suppose we say that n "covers" m iff both m and n are factorized as described in the sequence definition and each prime_m(i) <= prime_n(i). At least three sequences (A037019, A108951 and A181821) have the property that a(m) divides a(n) iff n "covers" m. These sequences are also divisibility sequences (i.e., sequences with the property that a(m) divides a(n) if m divides n), since any positive integer "covers" each of its divisors.
For any positive integers m and k, the following integer sequences (with n >= 0) are arithmetic progressions:
1. The sequence b(n) = a(m*(2^n)).
2. The sequence b(n) = a(m*(prime(n+k))) if prime(k) >= A006530(m).
Also, a(n) = the number of distinct prime signatures that occur among the divisors of any integer m such that A181819(m) = n and/or A238745(m) = n.
Number of skew partitions whose numerator has Heinz number n, where a skew partition is a pair y/v of integer partitions such that the diagram of v fits inside the diagram of y. The Heinz number of an integer partition (y_1,...,y_k) is prime(y_1)*...*prime(y_k). - Gus Wiseman, Feb 24 2018
Examples
The prime factorizations of integers 1 through 9, with prime factors sorted from largest to smallest: 1 - the empty factorization (no prime factors) 2 = 2 3 = 3 4 = 2*2 5 = 5 6 = 3*2 7 = 7 8 = 2*2*2 9 = 3*3 To find a(9), we consider 9 = 3*3. There are 6 positive integers (1, 2, 3, 4, 6 and 9) which satisfy the following criteria: 1) The largest prime factor, if one exists, is not greater than 3; 2) The second-largest prime factor, if one exists, is not greater than 3; 3) The total number of prime factors (counting repeated factors) does not exceed 2. Therefore, a(9) = 6. From _Gus Wiseman_, Feb 24 2018: (Start) Heinz numbers of the a(15) = 9 partitions contained within the partition (32) are 1, 2, 3, 4, 5, 6, 9, 10, 15. The a(15) = 9 skew partitions are (32)/(), (32)/(1), (32)/(11), (32)/(2), (32)/(21), (32)/(22), (32)/(3), (32)/(31), (32)/(32). Corresponding diagrams are: o o o . o o . o o . . o . . o . . o . . . . . . . . . o o o o . o o o . o . . o o . o . . (End)
Links
- Amiram Eldar, Table of n, a(n) for n = 1..10000
Crossrefs
Programs
-
Mathematica
undptns[y_]:=Select[Tuples[Range[0,#]&/@y],OrderedQ[#,GreaterEqual]&]; primeMS[n_]:=If[n===1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]]; Table[Length[undptns[Reverse[primeMS[n]]]],{n,100}] (* Gus Wiseman, Feb 24 2018 *)
A296561 Number of rim-hook (or border-strip) tableaux whose shape is the integer partition with Heinz number n.
1, 1, 2, 2, 4, 5, 8, 4, 10, 12, 16, 12, 32, 28, 29, 8, 64, 29, 128, 33, 78, 64, 256, 28, 62, 144, 62, 86, 512, 100, 1024, 16, 200, 320, 193, 78, 2048, 704, 496, 86, 4096, 306, 8192, 216, 242, 1536, 16384, 64, 414, 242, 1200, 528, 32768, 193, 552, 245, 2848, 3328
Offset: 1
Keywords
Comments
The Murnaghan-Nakayama rule uses rim-hook tableaux to expand Schur functions in terms of power-sum symmetric functions.
Examples
The a(6) = 5 tableaux: 3 2 3 1 2 2 2 1 1 1 1 2 1 2 1
References
- Richard P. Stanley, Enumerative Combinatorics Volume 2, Cambridge University Press, 1999, Chapter 7.17.
Links
- Wikipedia, Murnaghan-Nakayama rule
A323436 Number of plane partitions whose parts are the prime indices of n.
1, 1, 1, 1, 2, 1, 2, 1, 3, 2, 2, 1, 3, 1, 2, 2, 5, 1, 4, 1, 3, 2, 2, 1, 5, 2, 2, 3, 3, 1, 4, 1, 7, 2, 2, 2, 8, 1, 2, 2, 5, 1, 4, 1, 3, 3, 2, 1, 7, 2, 4, 2, 3, 1, 7, 2, 5, 2, 2, 1, 8, 1, 2, 3, 11, 2, 4, 1, 3, 2, 4, 1, 12, 1, 2, 4, 3, 2, 4, 1, 7, 5, 2, 1, 8, 2, 2
Offset: 0
Keywords
Comments
Number of ways to fill a Young diagram with the prime indices of n such that all rows and columns are weakly decreasing.
A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798.
Examples
The a(120) = 12 plane partitions: 32111 . 311 321 3111 3211 21 11 2 1 . 31 32 311 321 21 11 2 1 1 1 1 1 . 31 32 2 1 1 1 1 1 . 3 2 1 1 1
Crossrefs
Programs
-
Mathematica
primeMS[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]]; facs[n_]:=If[n<=1,{{}},Join@@Table[Map[Prepend[#,d]&,Select[facs[n/d],Min@@#>=d&]],{d,Rest[Divisors[n]]}]]; ptnplane[n_]:=Union[Map[Reverse@*primeMS,Join@@Permutations/@facs[n],{2}]]; Table[Length[Select[ptnplane[y],And[And@@GreaterEqual@@@#,And@@(GreaterEqual@@@Transpose[PadRight[#]])]&]],{y,100}]
A299925 Number of chains in Young's lattice from () to the partition with Heinz number n.
1, 1, 2, 2, 4, 6, 8, 4, 12, 16, 16, 16, 32, 40, 44, 8, 64, 44, 128, 52, 136, 96, 256, 40, 88, 224, 88, 152, 512, 204, 1024, 16, 384, 512, 360, 136, 2048, 1152, 1024, 152, 4096, 744, 8192, 416, 496, 2560, 16384, 96, 720, 496, 2624, 1088, 32768, 360, 1216, 504
Offset: 1
Keywords
Comments
a(n) is the number of normal generalized Young tableaux, of shape the integer partition with Heinz number n, with all rows and columns weakly increasing and all regions skew-partitions. A generalized Young tableau of shape y is an array obtained by replacing the dots in the Ferrers diagram of y with positive integers. A tableau is normal if its entries span an initial interval of positive integers. The Heinz number of an integer partition (y_1,...,y_k) is prime(y_1)*...*prime(y_k).
Examples
The a(9) = 12 tableaux: 1 3 1 2 2 4 3 4 . 1 3 1 2 1 2 1 2 1 1 2 3 3 3 2 3 1 3 2 3 . 1 2 1 2 1 1 1 1 2 2 1 2 2 2 1 2 . 1 1 1 1 The a(9) = 12 chains of Heinz numbers: 1<9, 1<2<9, 1<3<9, 1<4<9, 1<6<9, 1<2<3<9, 1<2<4<9, 1<2<6<9, 1<3<6<9, 1<4<6<9, 1<2<3<6<9, 1<2<4<6<9.
Crossrefs
Programs
-
Mathematica
primeMS[n_]:=If[n===1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]]; hncQ[a_,b_]:=And@@GreaterEqual@@@Transpose[PadRight[{Reverse[primeMS[b]],Reverse[primeMS[a]]}]]; chns[x_,y_]:=chns[x,y]=Join[{{x,y}},Join@@Function[c,Append[#,y]&/@chns[x,c]]/@Select[Range[x+1,y-1],hncQ[x,#]&&hncQ[#,y]&]]; Table[Length[chns[1,n]],{n,30}]
A299926 a(n) is the number of normal generalized Young tableaux of size n with all rows and columns weakly increasing and all regions skew partitions.
1, 4, 14, 60, 252, 1212, 5880, 30904, 166976, 952456, 5587840, 34217216, 215204960, 1401551376, 9360467760, 64384034784, 453328282624, 3274696185568, 24173219998912, 182546586425408
Offset: 1
Comments
If y is an integer partition of n, a generalized Young tableau of shape y is an array obtained by replacing the dots in the Ferrers diagram of y with positive integers. A tableau is normal if its entries span an initial interval of positive integers.
Examples
The a(3) = 14 tableaux: 1 2 3 1 2 2 1 1 2 1 1 1 . 1 3 1 2 1 2 1 2 1 1 1 1 2 3 2 1 2 1 . 1 1 1 1 2 2 1 1 3 2 2 1
Programs
-
Mathematica
undptns[y_]:=DeleteCases[Select[Tuples[Range[0,#]&/@y],OrderedQ[#,GreaterEqual]&],0,{2}]; chn[y_]:=Join[{{{},y}},Join@@Function[c,Append[#,y]&/@chn[c]]/@Take[undptns[y],{2,-2}]]; Table[Sum[Length[chn[y]],{y,IntegerPartitions[n]}],{n,8}]
Comments
Examples
Links
Crossrefs
Programs
Haskell
Mathematica
PARI
PARI
Python
Formula