cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 18 results. Next

A181819 Prime shadow of n: a(1) = 1; for n>1, if n = Product prime(i)^e(i), then a(n) = Product prime(e(i)).

Original entry on oeis.org

1, 2, 2, 3, 2, 4, 2, 5, 3, 4, 2, 6, 2, 4, 4, 7, 2, 6, 2, 6, 4, 4, 2, 10, 3, 4, 5, 6, 2, 8, 2, 11, 4, 4, 4, 9, 2, 4, 4, 10, 2, 8, 2, 6, 6, 4, 2, 14, 3, 6, 4, 6, 2, 10, 4, 10, 4, 4, 2, 12, 2, 4, 6, 13, 4, 8, 2, 6, 4, 8, 2, 15, 2, 4, 6, 6, 4, 8, 2, 14, 7, 4, 2, 12, 4, 4, 4, 10, 2, 12, 4, 6, 4, 4, 4, 22, 2, 6, 6, 9, 2, 8, 2, 10, 8
Offset: 1

Views

Author

Matthew Vandermast, Dec 07 2010

Keywords

Comments

a(n) depends only on prime signature of n (cf. A025487). a(m) = a(n) iff m and n have the same prime signature, i.e., iff A046523(m) = A046523(n).
Because A046523 (the smallest representative of prime signature of n) and this sequence are functions of each other as A046523(n) = A181821(a(n)) and a(n) = a(A046523(n)), it implies that for all i, j: a(i) = a(j) <=> A046523(i) = A046523(j) <=> A101296(i) = A101296(j), i.e., that equivalence-class-wise this is equal to A101296, and furthermore, applying any function f on this sequence gives us a sequence b(n) = f(a(n)) whose equivalence class partitioning is equal to or coarser than that of A101296, i.e., b is then a sequence that depends only on the prime signature of n (the multiset of exponents of its prime factors), although not necessarily in a very intuitive way. - Antti Karttunen, Apr 28 2022

Examples

			20 = 2^2*5 has the exponents (2,1) in its prime factorization. Accordingly, a(20) = prime(2)*prime(1) = A000040(2)*A000040(1) = 3*2 = 6.
		

Crossrefs

Programs

Formula

From Antti Karttunen, Feb 07 2016: (Start)
a(1) = 1; for n > 1, a(n) = A000040(A067029(n)) * a(A028234(n)).
a(1) = 1; for n > 1, a(n) = A008578(A001511(n)) * a(A064989(n)).
Other identities. For all n >= 1:
a(A124859(n)) = A122111(a(n)) = A238745(n). - from Matthew Vandermast's formulas for the latter sequence.
(End)
a(n) = A246029(A156552(n)). - Antti Karttunen, Oct 15 2016
From Antti Karttunen, Apr 28 & Apr 30 2022: (Start)
A181821(a(n)) = A046523(n) and a(A046523(n)) = a(n). [See comments]
a(n) = A329900(A124859(n)) = A319626(A124859(n)).
a(n) = A246029(A156552(n)).
a(a(n)) = A328830(n).
a(A304660(n)) = n.
a(A108951(n)) = A122111(n).
a(A185633(n)) = A322312(n).
a(A025487(n)) = A181820(n).
a(A276076(n)) = A275735(n) and a(A276086(n)) = A328835(n).
As the sequence converts prime exponents to prime indices, it effects the following mappings:
A001221(a(n)) = A071625(n). [Number of distinct indices --> Number of distinct exponents]
A001222(a(n)) = A001221(n). [Number of indices (i.e., the number of prime factors with multiplicity) --> Number of exponents (i.e., the number of distinct prime factors)]
A056239(a(n)) = A001222(n). [Sum of indices --> Sum of exponents]
A066328(a(n)) = A136565(n). [Sum of distinct indices --> Sum of distinct exponents]
A003963(a(n)) = A005361(n). [Product of indices --> Product of exponents]
A290103(a(n)) = A072411(n). [LCM of indices --> LCM of exponents]
A156061(a(n)) = A290107(n). [Product of distinct indices --> Product of distinct exponents]
A257993(a(n)) = A134193(n). [Index of the least prime not dividing n --> The least number not among the exponents]
A055396(a(n)) = A051904(n). [Index of the least prime dividing n --> Minimal exponent]
A061395(a(n)) = A051903(n). [Index of the greatest prime dividing n --> Maximal exponent]
A008966(a(n)) = A351564(n). [All indices are distinct (i.e., n is squarefree) --> All exponents are distinct]
A007814(a(n)) = A056169(n). [Number of occurrences of index 1 (i.e., the 2-adic valuation of n) --> Number of occurrences of exponent 1]
A056169(a(n)) = A136567(n). [Number of unitary prime divisors --> Number of exponents occurring only once]
A064989(a(n)) = a(A003557(n)) = A295879(n). [Indices decremented after <--> Exponents decremented before]
Other mappings:
A007947(a(n)) = a(A328400(n)) = A329601(n).
A181821(A007947(a(n))) = A328400(n).
A064553(a(n)) = A000005(n) and A000005(a(n)) = A182860(n).
A051903(a(n)) = A351946(n).
A003557(a(n)) = A351944(n).
A258851(a(n)) = A353379(n).
A008480(a(n)) = A309004(n).
a(A325501(n)) = A325507(n) and a(A325502(n)) = A038754(n+1).
a(n!) = A325508(n).
(End)

Extensions

Name "Prime shadow" (coined by Gus Wiseman in A325755) prefixed to the definition by Antti Karttunen, Apr 27 2022

A122111 Self-inverse permutation of the positive integers induced by partition enumeration in A112798 and partition conjugation.

Original entry on oeis.org

1, 2, 4, 3, 8, 6, 16, 5, 9, 12, 32, 10, 64, 24, 18, 7, 128, 15, 256, 20, 36, 48, 512, 14, 27, 96, 25, 40, 1024, 30, 2048, 11, 72, 192, 54, 21, 4096, 384, 144, 28, 8192, 60, 16384, 80, 50, 768, 32768, 22, 81, 45, 288, 160, 65536, 35, 108, 56, 576, 1536, 131072, 42
Offset: 1

Views

Author

Keywords

Comments

Factor n; replace each prime(i) with i, take the conjugate partition, replace parts i with prime(i) and multiply out.
From Antti Karttunen, May 12-19 2014: (Start)
For all n >= 1, A001222(a(n)) = A061395(n), and vice versa, A061395(a(n)) = A001222(n).
Because the partition conjugation doesn't change the partition's total sum, this permutation preserves A056239, i.e., A056239(a(n)) = A056239(n) for all n.
(Similarly, for all n, A001221(a(n)) = A001221(n), because the number of steps in the Ferrers/Young-diagram stays invariant under the conjugation. - Note added Apr 29 2022).
Because this permutation commutes with A241909, in other words, as a(A241909(n)) = A241909(a(n)) for all n, from which follows, because both permutations are self-inverse, that a(n) = A241909(a(A241909(n))), it means that this is also induced when partitions are conjugated in the partition enumeration system A241918. (Not only in A112798.)
(End)
From Antti Karttunen, Jul 31 2014: (Start)
Rows in arrays A243060 and A243070 converge towards this sequence, and also, assuming no surprises at the rate of that convergence, this sequence occurs also as the central diagonal of both.
Each even number is mapped to a unique term of A102750 and vice versa.
Conversely, each odd number (larger than 1) is mapped to a unique term of A070003, and vice versa. The permutation pair A243287-A243288 has the same property. This is also used to induce the permutations A244981-A244984.
Taking the odd bisection and dividing out the largest prime factor results in the permutation A243505.
Shares with A245613 the property that each term of A028260 is mapped to a unique term of A244990 and each term of A026424 is mapped to a unique term of A244991.
Conversely, with A245614 (the inverse of above), shares the property that each term of A244990 is mapped to a unique term of A028260 and each term of A244991 is mapped to a unique term of A026424.
(End)
The Maple program follows the steps described in the first comment. The subprogram C yields the conjugate partition of a given partition. - Emeric Deutsch, May 09 2015
The Heinz number of the partition that is conjugate to the partition with Heinz number n. The Heinz number of a partition p = [p_1, p_2, ..., p_r] is defined as Product(p_j-th prime, j=1...r). Example: a(3) = 4. Indeed, the partition with Heinz number 3 is [2]; its conjugate is [1,1] having Heinz number 4. - Emeric Deutsch, May 19 2015

Crossrefs

Cf. A088902 (fixed points).
Cf. A112798, A241918 (conjugates the partitions listed in these two tables).
Cf. A243060 and A243070. (Limit of rows in these arrays, and also their central diagonal).
Cf. A319988 (parity of this sequence for n > 1), A336124 (a(n) mod 4).
{A000027, A122111, A241909, A241916} form a 4-group.
{A000027, A122111, A153212, A242419} form also a 4-group.
Cf. also array A350066 [A(i, j) = a(a(i)*a(j))].

Programs

  • Maple
    with(numtheory): c := proc (n) local B, C: B := proc (n) local pf: pf := op(2, ifactors(n)): [seq(seq(pi(op(1, op(i, pf))), j = 1 .. op(2, op(i, pf))), i = 1 .. nops(pf))] end proc: C := proc (P) local a: a := proc (j) local c, i: c := 0; for i to nops(P) do if j <= P[i] then c := c+1 else  end if end do: c end proc: [seq(a(k), k = 1 .. max(P))] end proc: mul(ithprime(C(B(n))[q]), q = 1 .. nops(C(B(n)))) end proc: seq(c(n), n = 1 .. 59); # Emeric Deutsch, May 09 2015
    # second Maple program:
    a:= n-> (l-> mul(ithprime(add(`if`(jAlois P. Heinz, Sep 30 2017
  • Mathematica
    A122111[1] = 1; A122111[n_] := Module[{l = #, m = 0}, Times @@ Power @@@ Table[l -= m; l = DeleteCases[l, 0]; {Prime@Length@l, m = Min@l}, Length@Union@l]] &@Catenate[ConstantArray[PrimePi[#1], #2] & @@@ FactorInteger@n]; Array[A122111, 60] (* JungHwan Min, Aug 22 2016 *)
    a[n_] := Function[l, Product[Prime[Sum[If[jJean-François Alcover, Sep 23 2020, after Alois P. Heinz *)
  • PARI
    A122111(n) = if(1==n,n,my(f=factor(n), es=Vecrev(f[,2]),is=concat(apply(primepi,Vecrev(f[,1])),[0]),pri=0,m=1); for(i=1, #es, pri += es[i]; m *= prime(pri)^(is[i]-is[1+i])); (m)); \\ Antti Karttunen, Jul 20 2020
    
  • Python
    from sympy import factorint, prevprime, prime, primefactors
    from operator import mul
    def a001222(n): return 0 if n==1 else a001222(n/primefactors(n)[0]) + 1
    def a064989(n):
        f=factorint(n)
        return 1 if n==1 else reduce(mul, [1 if i==2 else prevprime(i)**f[i] for i in f])
    def a105560(n): return 1 if n==1 else prime(a001222(n))
    def a(n): return 1 if n==1 else a105560(n)*a(a064989(n))
    [a(n) for n in range(1, 101)] # Indranil Ghosh, Jun 15 2017
  • Scheme
    ;; Uses Antti Karttunen's IntSeq-library.
    (definec (A122111 n) (if (<= n 1) n (* (A000040 (A001222 n)) (A122111 (A064989 n)))))
    ;; Antti Karttunen, May 12 2014
    
  • Scheme
    ;; Uses Antti Karttunen's IntSeq-library.
    (definec (A122111 n) (if (<= n 1) n (* (A000079 (A241917 n)) (A003961 (A122111 (A052126 n))))))
    ;; Antti Karttunen, May 12 2014
    
  • Scheme
    ;; Uses Antti Karttunen's IntSeq-library.
    (definec (A122111 n) (if (<= n 1) n (* (expt (A000040 (A071178 n)) (A241919 n)) (A242378bi (A071178 n) (A122111 (A051119 n))))))
    ;; Antti Karttunen, May 12 2014
    

Formula

From Antti Karttunen, May 12-19 2014: (Start)
a(1) = 1, a(p_i) = 2^i, and for other cases, if n = p_i1 * p_i2 * p_i3 * ... * p_{k-1} * p_k, where p's are primes, not necessarily distinct, sorted into nondescending order so that i1 <= i2 <= i3 <= ... <= i_{k-1} <= ik, then a(n) = 2^(ik-i_{k-1}) * 3^(i_{k-1}-i_{k-2}) * ... * p_{i_{k-1}}^(i2-i1) * p_ik^(i1).
This can be implemented as a recurrence, with base case a(1) = 1,
and then using any of the following three alternative formulas:
a(n) = A105560(n) * a(A064989(n)) = A000040(A001222(n)) * a(A064989(n)). [Cf. the formula for A242424.]
a(n) = A000079(A241917(n)) * A003961(a(A052126(n))).
a(n) = (A000040(A071178(n))^A241919(n)) * A242378(A071178(n), a(A051119(n))). [Here ^ stands for the ordinary exponentiation, and the bivariate function A242378(k,n) changes each prime p(i) in the prime factorization of n to p(i+k), i.e., it's the result of A003961 iterated k times starting from n.]
a(n) = 1 + A075157(A129594(A075158(n-1))). [Follows from the commutativity with A241909, please see the comments section.]
(End)
From Antti Karttunen, Jul 31 2014: (Start)
As a composition of related permutations:
a(n) = A153212(A242419(n)) = A242419(A153212(n)).
a(n) = A241909(A241916(n)) = A241916(A241909(n)).
a(n) = A243505(A048673(n)).
a(n) = A064216(A243506(n)).
Other identities. For all n >= 1, the following holds:
A006530(a(n)) = A105560(n). [The latter sequence gives greatest prime factor of the n-th term].
a(2n)/a(n) = A105560(2n)/A105560(n), which is equal to A003961(A105560(n))/A105560(n) when n > 1.
A243505(n) = A052126(a(2n-1)) = A052126(a(4n-2)).
A066829(n) = A244992(a(n)) and vice versa, A244992(n) = A066829(a(n)).
A243503(a(n)) = A243503(n). [Because partition conjugation does not change the partition size.]
A238690(a(n)) = A238690(n). - per Matthew Vandermast's note in that sequence.
A238745(n) = a(A181819(n)) and a(A238745(n)) = A181819(n). - per Matthew Vandermast's note in A238745.
A181815(n) = a(A181820(n)) and a(A181815(n)) = A181820(n). - per Matthew Vandermast's note in A181815.
(End)
a(n) = A181819(A108951(n)). [Prime shadow of the primorial inflation of n] - Antti Karttunen, Apr 29 2022

A108951 Primorial inflation of n: Fully multiplicative with a(p) = p# for prime p, where x# is the primorial A034386(x).

Original entry on oeis.org

1, 2, 6, 4, 30, 12, 210, 8, 36, 60, 2310, 24, 30030, 420, 180, 16, 510510, 72, 9699690, 120, 1260, 4620, 223092870, 48, 900, 60060, 216, 840, 6469693230, 360, 200560490130, 32, 13860, 1021020, 6300, 144, 7420738134810, 19399380, 180180, 240, 304250263527210, 2520
Offset: 1

Views

Author

Paul Boddington, Jul 21 2005

Keywords

Comments

This sequence is a permutation of A025487.
And thus also a permutation of A181812, see the formula section. - Antti Karttunen, Jul 21 2014
A previous description of this sequence was: "Multiplicative with a(p^e) equal to the product of the e-th powers of all primes at most p" (see extensions), Giuseppe Coppoletta, Feb 28 2015

Examples

			a(12) = a(2^2) * a(3) = (2#)^2 * (3#) = 2^2 * 6 = 24
a(45) = (3#)^2 * (5#) = (2*3)^2 * (2*3*5) = 1080 (as 45 = 3^2 * 5).
		

Crossrefs

Programs

  • Mathematica
    a[n_] := a[n] = Module[{f = FactorInteger[n], p, e}, If[Length[f]>1, Times @@ a /@ Power @@@ f, {{p, e}} = f; Times @@ (Prime[Range[PrimePi[p]]]^e)]]; a[1] = 1; Table[a[n], {n, 1, 42}] (* Jean-François Alcover, Feb 24 2015 *)
    Table[Times @@ Map[#1^#2 & @@ # &, FactorInteger[n] /. {p_, e_} /; e > 0 :> {Times @@ Prime@ Range@ PrimePi@ p, e}], {n, 42}] (* Michael De Vlieger, Mar 18 2017 *)
  • PARI
    primorial(n)=prod(i=1,primepi(n),prime(i))
    a(n)=my(f=factor(n)); prod(i=1,#f~, primorial(f[i,1])^f[i,2]) \\ Charles R Greathouse IV, Jun 28 2015
    
  • Python
    from sympy import primerange, factorint
    from operator import mul
    def P(n): return reduce(mul, [i for i in primerange(2, n + 1)])
    def a(n):
        f = factorint(n)
        return 1 if n==1 else reduce(mul, [P(i)**f[i] for i in f])
    print([a(n) for n in range(1, 101)]) # Indranil Ghosh, May 14 2017
  • Sage
    def sharp_primorial(n): return sloane.A002110(prime_pi(n))
    def p(f):
        return sharp_primorial(f[0])^f[1]
    [prod(p(f) for f in factor(n)) for n in range (1,51)]
    # Giuseppe Coppoletta, Feb 07 2015
    

Formula

Dirichlet g.f.: 1/(1-2*2^(-s))/(1-6*3^(-s))/(1-30*5^(-s))...
Completely multiplicative with a(p_i) = A002110(i) = prime(i)#. [Franklin T. Adams-Watters, Jun 24 2009; typos corrected by Antti Karttunen, Jul 21 2014]
From Antti Karttunen, Jul 21 2014: (Start)
a(1) = 1, and for n > 1, a(n) = n * a(A064989(n)).
a(n) = n * A181811(n).
a(n) = A002110(A061395(n)) * A331188(n). - [added Jan 14 2020]
a(n) = A181812(A048673(n)).
Other identities:
A006530(a(n)) = A006530(n). [Preserves the largest prime factor of n.]
A071178(a(n)) = A071178(n). [And also its exponent.]
a(2^n) = 2^n. [Fixes the powers of two.]
A067029(a(n)) = A007814(a(n)) = A001222(n). [The exponent of the least prime of a(n), that prime always being 2 for n>1, is equal to the total number of prime factors in n.]
(End)
From Antti Karttunen, Nov 19 2019: (Start)
Further identities:
a(A307035(n)) = A000142(n).
a(A003418(n)) = A181814(n).
a(A025487(n)) = A181817(n).
a(A181820(n)) = A181822(n).
a(A019565(n)) = A283477(n).
A001221(a(n)) = A061395(n).
A001222(a(n)) = A056239(n).
A181819(a(n)) = A122111(n).
A124859(a(n)) = A181821(n).
A085082(a(n)) = A238690(n).
A328400(a(n)) = A329600(n). (smallest number with the same set of distinct prime exponents)
A000188(a(n)) = A329602(n). (square root of the greatest square divisor)
A072411(a(n)) = A329378(n). (LCM of exponents of prime factors)
A005361(a(n)) = A329382(n). (product of exponents of prime factors)
A290107(a(n)) = A329617(n). (product of distinct exponents of prime factors)
A000005(a(n)) = A329605(n). (number of divisors)
A071187(a(n)) = A329614(n). (smallest prime factor of number of divisors)
A267115(a(n)) = A329615(n). (bitwise-AND of exponents of prime factors)
A267116(a(n)) = A329616(n). (bitwise-OR of exponents of prime factors)
A268387(a(n)) = A329647(n). (bitwise-XOR of exponents of prime factors)
A276086(a(n)) = A324886(n). (prime product form of primorial base expansion)
A324580(a(n)) = A324887(n).
A276150(a(n)) = A324888(n). (digit sum in primorial base)
A267263(a(n)) = A329040(n). (number of distinct nonzero digits in primorial base)
A243055(a(n)) = A329343(n).
A276088(a(n)) = A329348(n). (least significant nonzero digit in primorial base)
A276153(a(n)) = A329349(n). (most significant nonzero digit in primorial base)
A328114(a(n)) = A329344(n). (maximal digit in primorial base)
A062977(a(n)) = A325226(n).
A097248(a(n)) = A283478(n).
A324895(a(n)) = A324896(n).
A324655(a(n)) = A329046(n).
A327860(a(n)) = A329047(n).
A329601(a(n)) = A329607(n).
(End)
a(A181815(n)) = A025487(n), and A319626(a(n)) = A329900(a(n)) = n. - Antti Karttunen, Dec 29 2019
From Antti Karttunen, Jul 09 2021: (Start)
a(n) = A346092(n) + A346093(n).
a(n) = A346108(n) - A346109(n).
a(A342012(n)) = A004490(n).
a(A337478(n)) = A336389(n).
A336835(a(n)) = A337474(n).
A342002(a(n)) = A342920(n).
A328571(a(n)) = A346091(n).
A328572(a(n)) = A344592(n).
(End)
Sum_{n>=1} 1/a(n) = A161360. - Amiram Eldar, Aug 04 2022

Extensions

More terms computed by Antti Karttunen, Jul 21 2014
The name of the sequence was changed for more clarity, in accordance with the above remark of Franklin T. Adams-Watters (dated Jun 24 2009). It is implicitly understood that a(n) is then uniquely defined by completely multiplicative extension. - Giuseppe Coppoletta, Feb 28 2015
Name "Primorial inflation" (coined by Matthew Vandermast in A181815) prefixed to the name by Antti Karttunen, Jan 14 2020

A300121 Number of normal generalized Young tableaux, of shape the integer partition with Heinz number n, with all rows and columns weakly increasing and all regions connected skew partitions.

Original entry on oeis.org

1, 1, 2, 2, 4, 5, 8, 4, 11, 12, 16, 12, 32, 28, 31, 8, 64, 31, 128, 33, 82, 64, 256, 28, 69, 144, 69, 86, 512, 105, 1024, 16, 208, 320, 209, 82, 2048, 704, 512, 86, 4096, 318, 8192, 216, 262, 1536, 16384, 64, 465, 262, 1232, 528, 32768, 209, 588, 245, 2912, 3328
Offset: 1

Views

Author

Gus Wiseman, Feb 25 2018

Keywords

Comments

The diagram of a connected skew partition is required to be connected as a polyomino but can have empty rows or columns. A generalized Young tableau of shape y is an array obtained by replacing the dots in the Ferrers diagram of y with positive integers. A tableau is normal if its entries span an initial interval of positive integers. The Heinz number of an integer partition (y_1,...,y_k) is prime(y_1)*...*prime(y_k).

Examples

			The a(9) = 11 tableaux:
1 1
1 1
.
2 1   1 1   1 1   1 2
1 1   1 2   2 2   1 2
.
1 1   1 2   1 2   1 3
2 3   1 3   3 3   2 3
.
1 2   1 3
3 4   2 4
		

Crossrefs

Programs

  • Mathematica
    undcon[y_]:=Select[Tuples[Range[0,#]&/@y],Function[v,GreaterEqual@@v&&With[{r=Select[Range[Length[y]],y[[#]]=!=v[[#]]&]},Or[Length[r]<=1,And@@Table[v[[i]]Table[PrimePi[p],{k}]]]];
    Table[Length[cos[Reverse[primeMS[n]]]],{n,50}]

A299968 Number of normal generalized Young tableaux of size n with all rows and columns strictly increasing.

Original entry on oeis.org

1, 1, 2, 5, 15, 51, 189, 753, 3248, 14738, 70658, 354178, 1857703, 10121033, 57224955, 334321008, 2017234773, 12530668585, 80083779383, 525284893144, 3533663143981, 24336720018666, 171484380988738, 1234596183001927, 9075879776056533, 68052896425955296
Offset: 0

Views

Author

Gus Wiseman, Feb 26 2018

Keywords

Comments

A generalized Young tableau of shape y is an array obtained by replacing the dots in the Ferrers diagram of y with positive integers. A tableau is normal if its entries span an initial interval of positive integers.

Examples

			The a(4) = 15 tableaux:
1 2 3 4
.
1 2 3   1 2 4   1 3 4   1 2 3   1 2 3
4       3       2       2       3
.
1 2   1 3   1 2
3 4   2 4   2 3
.
1 2   1 3   1 2   1 4   1 3
3     2     2     2     2
4     4     3     3     3
.
1
2
3
4
		

Crossrefs

Programs

  • Mathematica
    unddis[y_]:=DeleteCases[y-#,0]&/@Tuples[Table[If[y[[i]]>Append[y,0][[i+1]],{0,1},{0}],{i,Length[y]}]];
    dos[y_]:=With[{sam=Rest[unddis[y]]},If[Length[sam]===0,If[Total[y]===0,{{}},{}],Join@@Table[Prepend[#,y]&/@dos[sam[[k]]],{k,1,Length[sam]}]]];
    Table[Sum[Length[dos[y]],{y,IntegerPartitions[n]}],{n,1,8}]

Formula

a(n) = Sum_{k=0..n} 2^k * A238121(n,k). - Ludovic Schwob, Sep 23 2023

Extensions

More terms from Ludovic Schwob, Sep 23 2023

A299925 Number of chains in Young's lattice from () to the partition with Heinz number n.

Original entry on oeis.org

1, 1, 2, 2, 4, 6, 8, 4, 12, 16, 16, 16, 32, 40, 44, 8, 64, 44, 128, 52, 136, 96, 256, 40, 88, 224, 88, 152, 512, 204, 1024, 16, 384, 512, 360, 136, 2048, 1152, 1024, 152, 4096, 744, 8192, 416, 496, 2560, 16384, 96, 720, 496, 2624, 1088, 32768, 360, 1216, 504
Offset: 1

Views

Author

Gus Wiseman, Feb 21 2018

Keywords

Comments

a(n) is the number of normal generalized Young tableaux, of shape the integer partition with Heinz number n, with all rows and columns weakly increasing and all regions skew-partitions. A generalized Young tableau of shape y is an array obtained by replacing the dots in the Ferrers diagram of y with positive integers. A tableau is normal if its entries span an initial interval of positive integers. The Heinz number of an integer partition (y_1,...,y_k) is prime(y_1)*...*prime(y_k).

Examples

			The a(9) = 12 tableaux:
1 3   1 2
2 4   3 4
.
1 3   1 2   1 2   1 2   1 1
2 3   3 3   2 3   1 3   2 3
.
1 2   1 2   1 1   1 1
2 2   1 2   2 2   1 2
.
1 1
1 1
The a(9) = 12 chains of Heinz numbers:
1<9,
1<2<9, 1<3<9, 1<4<9, 1<6<9,
1<2<3<9, 1<2<4<9, 1<2<6<9, 1<3<6<9, 1<4<6<9,
1<2<3<6<9, 1<2<4<6<9.
		

Crossrefs

Programs

  • Mathematica
    primeMS[n_]:=If[n===1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
    hncQ[a_,b_]:=And@@GreaterEqual@@@Transpose[PadRight[{Reverse[primeMS[b]],Reverse[primeMS[a]]}]];
    chns[x_,y_]:=chns[x,y]=Join[{{x,y}},Join@@Function[c,Append[#,y]&/@chns[x,c]]/@Select[Range[x+1,y-1],hncQ[x,#]&&hncQ[#,y]&]];
    Table[Length[chns[1,n]],{n,30}]

A238689 Table read by rows: first row is {1}; for n >1, T(n, k) is the k-th largest prime factor of n (repeated prime factors are counted repeatedly).

Original entry on oeis.org

1, 2, 3, 2, 2, 5, 3, 2, 7, 2, 2, 2, 3, 3, 5, 2, 11, 3, 2, 2, 13, 7, 2, 5, 3, 2, 2, 2, 2, 17, 3, 3, 2, 19, 5, 2, 2, 7, 3, 11, 2, 23, 3, 2, 2, 2, 5, 5, 13, 2, 3, 3, 3, 7, 2, 2, 29, 5, 3, 2, 31, 2, 2, 2, 2, 2, 11, 3, 17, 2, 7, 5, 3, 3, 2, 2, 37, 19, 2, 13, 3, 5, 2, 2, 2
Offset: 1

Views

Author

Matthew Vandermast, Apr 28 2014

Keywords

Comments

n-th row has length 1 if n = 1, A001222(n) if n > 1.

Examples

			Table begins:
1;
2;
3;
2,2;
5;
3,2;
7;
2,2,2;
3,3;
5,2;
...
		

Crossrefs

First column is A006530; numbers along right boundary form A020639.
A001414 gives row sums (for n > 1).

Programs

  • Haskell
    a238689_row 1 = [1]
    a238689_row n = a n [] a000040_list where
      a m factors ps@(p:ps')
        | m == 1         = factors
        | m `mod` p == 0 = a (m `div` p) (p : factors) ps
        | otherwise      = a m           factors       ps'
    a   [] = [] -- Peter Kagey, Sep 15 2016

Formula

Row n is row n of A027746 in reverse order.

A300060 Number of domino tilings of the diagram of the integer partition with Heinz number n.

Original entry on oeis.org

1, 0, 1, 1, 0, 0, 1, 0, 2, 1, 0, 1, 1, 0, 0, 1, 0, 0, 1, 0, 2, 1, 0, 0, 3, 0, 3, 1, 1, 0, 0, 0, 0, 1, 0, 2, 1, 0, 2, 1, 0, 0, 1, 0, 0, 1, 0, 1, 5, 0, 0, 1, 1, 0, 3, 0, 2, 0, 0, 0, 1, 1, 3, 1, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 4, 1, 0, 0, 1, 0, 5, 1, 0, 2, 3, 0, 2, 1, 1, 1, 5, 0, 0, 1, 0, 0, 0, 0, 0, 3, 1, 0, 0, 0, 0, 0
Offset: 1

Views

Author

Gus Wiseman, Feb 23 2018

Keywords

Comments

The Heinz number of an integer partition (y_1,...,y_k) is prime(y_1)*...*prime(y_k).

Crossrefs

Programs

  • Maple
    h:= proc(l, f) option remember; local k; if min(l[])>0 then
         `if`(nops(f)=0, 1, h(map(x-> x-1, l[1..f[1]]), subsop(1=[][], f)))
        else for k from nops(l) while l[k]>0 by -1 do od;
            `if`(nops(f)>0 and f[1]>=k, h(subsop(k=2, l), f), 0)+
            `if`(k>1 and l[k-1]=0, h(subsop(k=1, k-1=1, l), f), 0)
          fi
        end:
    g:= l-> `if`(add(`if`(l[i]::odd, (-1)^i, 0), i=1..nops(l))=0,
            `if`(l=[], 1, h([0$l[1]], subsop(1=[][], l))), 0):
    a:= n-> g(sort(map(i-> numtheory[pi](i[1])$i[2], ifactors(n)[2]), `>`)):
    seq(a(n), n=1..120);  # Alois P. Heinz, May 22 2018
  • Mathematica
    h[l_, f_] := h[l, f] = Module[{k}, If[Min[l] > 0, If[Length[f] == 0, 1, h[Map[Function[x, x-1], l[[Range @ f[[1]]]]], ReplacePart[f, 1 -> Nothing]]], For[k = Length[l], l[[k]] > 0, k-- ]; If[Length[f] > 0 && f[[1]] >= k, h[ReplacePart[l, k -> 2], f], 0] + If[k > 1 && l[[k-1]] == 0, h[ReplacePart[l, {k -> 1, k - 1 -> 1}], f], 0]]];
    g[l_] := If[Sum[If[OddQ @ l[[i]], (-1)^i, 0], {i, 1, Length[l]}] == 0, If[l == {}, 1, h[Table[0, l[[1]]], ReplacePart[l, 1 -> Nothing]]], 0];
    a[n_] := g[Reverse @ Sort[ Flatten[ Map[ Function[i, Table[PrimePi[i[[1]]], i[[2]]]], FactorInteger[n]]]]];
    Array[a, 120] (* Jean-François Alcover, May 28 2018, after Alois P. Heinz *)

A300056 Number of normal standard domino tableaux whose shape is the integer partition with Heinz number n.

Original entry on oeis.org

1, 0, 1, 1, 0, 0, 1, 0, 2, 1, 0, 1, 1, 0, 0, 1, 0, 0, 1, 0, 3, 1, 0, 0, 3, 0, 3, 2, 1, 0, 0, 0, 0, 1, 0, 3, 1, 0, 4, 2, 0, 0, 1, 0, 0, 1, 0, 1, 6, 0, 0, 3, 1, 0, 4, 0, 5, 0, 0, 0, 1, 1, 8, 1, 0, 0, 0, 0, 0, 2, 1, 0, 0, 0, 6, 4, 0, 0, 1, 0, 6, 1, 0, 6, 5, 0, 6, 3, 1, 2, 10, 0, 0, 1, 0, 0, 0, 0, 0, 8, 1, 0, 0, 0, 0, 0
Offset: 1

Views

Author

Gus Wiseman, Feb 23 2018

Keywords

Comments

A generalized Young tableau of shape y is an array obtained by replacing the dots in the Ferrers diagram of y with positive integers. A tableau is normal if its entries span an initial interval of positive integers. A standard domino tableau is a generalized Young tableau in which all rows and columns are weakly increasing and all regions are dominos. The Heinz number of an integer partition (y_1,...,y_k) is prime(y_1)*...*prime(y_k).

Examples

			The a(75) = 6 tableaux:
1 2 4   1 2 3   1 2 2   1 1 4   1 1 4   1 1 3
1 2 4   1 2 3   1 3 3   2 3 4   2 2 4   2 2 3
3 3     4 4     4 4     2 3     3 3     4 4
		

Crossrefs

A300120 Number of skew partitions whose quotient diagram is connected and whose numerator has weight n.

Original entry on oeis.org

2, 6, 12, 26, 44, 86, 136, 239, 376, 613, 930, 1485, 2194, 3355, 4948, 7372, 10656, 15660, 22359, 32308
Offset: 1

Views

Author

Gus Wiseman, Feb 25 2018

Keywords

Comments

The diagram of a connected skew partition is required to be connected as a polyomino but can have empty rows or columns.

Examples

			The a(3) = 12 skew partitions:
(3)/()   (3)/(1)   (3)/(2)    (3)/(3)
(21)/()  (21)/(11) (21)/(2)   (21)/(21)
(111)/() (111)/(1) (111)/(11) (111)/(111)
		

Crossrefs

Programs

  • Mathematica
    undcon[y_]:=Select[Tuples[Range[0,#]&/@y],Function[v,GreaterEqual@@v&&With[{r=Select[Range[Length[y]],y[[#]]=!=v[[#]]&]},Or[Length[r]<=1,And@@Table[v[[i]]
    				
Showing 1-10 of 18 results. Next