A210391
Number A(n,k) of semistandard Young tableaux over all partitions of n with maximal element <= k; square array A(n,k), n>=0, k>=0, read by antidiagonals.
Original entry on oeis.org
1, 1, 0, 1, 1, 0, 1, 2, 1, 0, 1, 3, 4, 1, 0, 1, 4, 9, 6, 1, 0, 1, 5, 16, 19, 9, 1, 0, 1, 6, 25, 44, 39, 12, 1, 0, 1, 7, 36, 85, 116, 69, 16, 1, 0, 1, 8, 49, 146, 275, 260, 119, 20, 1, 0, 1, 9, 64, 231, 561, 751, 560, 189, 25, 1, 0
Offset: 0
Square array A(n,k) begins:
1, 1, 1, 1, 1, 1, 1, ...
0, 1, 2, 3, 4, 5, 6, ...
0, 1, 4, 9, 16, 25, 36, ...
0, 1, 6, 19, 44, 85, 146, ...
0, 1, 9, 39, 116, 275, 561, ...
0, 1, 12, 69, 260, 751, 1812, ...
0, 1, 16, 119, 560, 1955, 5552, ...
Rows n=0-10 give:
A000012,
A001477,
A000290,
A005900,
A139594,
A210427,
A210428,
A210429,
A210430,
A210431,
A210432.
-
# First program:
h:= (l, k)-> mul(mul((k+j-i)/(1+l[i] -j +add(`if`(l[t]>=j, 1, 0)
, t=i+1..nops(l))), j=1..l[i]), i=1..nops(l)):
g:= proc(n, i, k, l)
`if`(n=0, h(l, k), `if`(i<1, 0, g(n, i-1, k, l)+
`if`(i>n, 0, g(n-i, i, k, [l[], i]))))
end:
A:= (n, k)-> `if`(n=0, 1, g(n, n, k, [])):
seq(seq(A(n, d-n), n=0..d), d=0..12);
# second program:
gf:= k-> 1/((1-x)^k*(1-x^2)^(k*(k-1)/2)):
A:= (n, k)-> coeff(series(gf(k), x, n+1), x, n):
seq(seq(A(n, d-n), n=0..d), d=0..12);
-
(* First program: *)
h[l_, k_] := Product[Product[(k+j-i)/(1+l[[i]]-j + Sum[If[l[[t]] >= j, 1, 0], {t, i+1, Length[l]}]), {j, 1, l[[i]]}], {i, 1, Length[l]}]; g [n_, i_, k_, l_] := If[n == 0, h[l, k], If[i < 1, 0, g[n, i-1, k, l] + If[i > n, 0, g[n-i, i, k, Append[l, i]]]]]; a[n_, k_] := If[n == 0, 1, g[n, n, k, {}]]; Table[Table[a[n, d-n], {n, 0, d}], {d, 0, 12}] // Flatten
(* second program: *)
gf[k_] := 1/((1-x)^k*(1-x^2)^(k*(k-1)/2)); a[n_, k_] := Coefficient[Series[gf[k], {x, 0, n+1}], x, n]; Table[Table[a[n, d-n], {n, 0, d}], {d, 0, 12}] // Flatten (* Jean-François Alcover, Dec 09 2013, translated from Maple *)
A124577
Define p(alpha) to be the number of H-conjugacy classes where H is a Young subgroup of type alpha of the symmetric group S_n. Then a(n) = sum p(alpha) where |alpha| = n and alpha has at most n parts.
Original entry on oeis.org
1, 1, 6, 39, 356, 4055, 57786, 983535, 19520264, 441967518, 11235798510, 316719689506, 9800860032876, 330230585628437, 12032866998445818, 471416196117401340, 19758835313514076176, 882185444649249777913, 41797472220815112375966, 2094455101139881670407954
Offset: 0
Richard Bayley (r.t.bayley(AT)qmul.ac.uk), Nov 05 2006
E.g p((2,1)) = # H-conjugacy classes of S_3 where H = Yng((2,1)) isom S_2 times S_1 . Then a(3) = p((3)) + p((2,1)) + p((2,0,1)) + p((1,2)) + p((1,1,1))+ p((1,0,2)+ p((0,2,1)) + p((0,1,2)) + p((0,0,3)) = 3+4+4+4+6+4+3+4+4+3 = 39.
- Alois P. Heinz, Table of n, a(n) for n = 0..250
- Richard Bayley, Homepage.
- Richard Bayley, Relative Character Theory and the Hyperoctahedral Group, Ph.D. thesis, Queen Mary College, University of London, to be published 2007.
- Steve Donkin, Invariant functions on Matrices, Math. Proc. Camb. Phil. Soc. 113 (1993) 23-43.
- Wikipedia, Symmetric Polynomials
-
b:= proc(n, i, k) option remember; `if`(n=0, 1, `if`(i<1, 0,
b(n, i-1, k) +`if`(i>n, 0, k*b(n-i, i, k))))
end:
a:= n-> b(n$3):
seq(a(n), n=0..20); # Alois P. Heinz, Sep 08 2014
-
p[n_Integer, v_] := Sum[Subscript[x, j]^n, {j, v}];
p[par_List, v_] := Times @@ (p[#, v] & /@ par);
Tr /@ Table[(p[#, l] & /@ IntegerPartitions[l]) /. Subscript[x, ] -> 1, {l, 19}] (* _Wouter Meeussen, Mar 11 2012 *)
b[n_, i_, k_] := b[n, i, k] = If[n == 0, 1, If[i < 1, 0, b[n, i - 1, k] + If[i > n, 0, k*b[n - i, i, k]]]]; a[n_] := b[n, n, n]; Table[a[n], {n, 0, 20}] (* Jean-François Alcover, Aug 29 2016, after Alois P. Heinz *)
-
{a(n)=polcoeff(1/prod(k=1,n,1-n*x^k +x*O(x^n)),n)} \\ Paul D. Hanna, Nov 26 2009
A209668
a(n) = count of monomials, of degree k = n, in the complete homogeneous symmetric polynomials h(mu,k) summed over all partitions mu of n.
Original entry on oeis.org
1, 1, 7, 55, 631, 8001, 130453, 2323483, 48916087, 1129559068, 29442232007, 835245785452, 26113646252773, 880685234758941, 32191922753658129, 1259701078978200555, 52802268925363689079, 2352843030410455053891, 111343906794849929711260, 5567596199767400904172045
Offset: 0
-
b:= proc(n, i, k) option remember; `if`(n=0, 1, `if`(i<1, 0,
add(b(n-i*j, i-1, k)*binomial(i+k-1, k-1)^j, j=0..n/i)))
end:
a:= n-> b(n$3):
seq(a(n), n=0..25); # Alois P. Heinz, Aug 29 2015
-
h[n_, v_] := Tr@ Apply[Times, Table[Subscript[x, j], {j, v}]^# & /@ Compositions[n, v], {1}]; h[par_?PartitionQ, v_] := Times @@ (h[#, v] & /@ par); Tr /@ Table[(h[#, l] & /@ Partitions[l]) /. Subscript[x, _] -> 1, {l, 10}]
b[n_, i_, k_] := b[n, i, k] = If[n==0, 1, If[i<1, 0, Sum[b[n-i*j, i-1, k] * Binomial[i+k-1, k-1]^j, {j, 0, n/i}]]]; a[n_] := b[n, n, n]; Table[a[n], {n, 0, 25}] (* Jean-François Alcover, Jan 15 2016, after Alois P. Heinz *)
A191714
a(n,k) equals the number of semistandard Young tableaux with shape of a partition of n and maximal element <= k.
Original entry on oeis.org
1, 1, 4, 1, 6, 19, 1, 9, 39, 116, 1, 12, 69, 260, 751, 1, 16, 119, 560, 1955, 5552, 1, 20, 189, 1100, 4615, 15372, 43219, 1, 25, 294, 2090, 10460, 40677, 131131, 366088, 1, 30, 434, 3740, 22220, 100562, 370909, 1168008, 3245311, 1, 36, 630, 6512, 45628, 239316, 1007083, 3570240, 11042199, 30569012, 1, 42, 882, 10868, 89420, 541926, 2596573, 10347864, 35587071, 108535130, 299662672, 1, 49, 1218, 17732, 170340, 1188341, 6466159, 28915056, 110426979, 370661885, 1117689232, 3079276708
Offset: 1
For n=3 and k=2 the SSYT are
par= {3} SSYT= {{1, 1, 1}}, {{2, 1, 1}}, {{2, 2, 1}}, {{2, 2, 2}}
par= {2,1} SSYT= {{2, 1}, {1}}, {{2, 2}, {1}}
par= {1,1,1} SSYT= none
counts 4+2+0 = 6 = a(3,2).
Table begins:
1;
1, 4;
1, 6, 19;
1, 9, 39, 116;
1, 12, 69, 260, 751;
1, 16, 119, 560, 1955, 5552;
1, 20, 189, 1100, 4615, 15372, 43219; ...
-
Needs["Combinatorica`"];
hooklength[(p_)?PartitionQ] := Block[{ferr = (PadLeft[1 + 0*Range[#1], Max[p]] &) /@ p}, DeleteCases[(Rest[FoldList[Plus, 0, #1]] &) /@ ferr + Reverse /@ Reverse[Transpose[(Rest[FoldList[Plus, 0, #1]] &) /@ Reverse[Reverse /@ Transpose[ferr]]]], 0, -1] - 1];
content[(p_)?PartitionQ]:= Block[{le= Max[p], ferr =(PadLeft[1+ 0*Range[#1], Max[p]]&) /@ p}, DeleteCases[ MapIndexed[-le+ Range[le,1,-1]- #1- Tr[#2]&, 0*ferr]*ferr,0,-1]+ le];
stanley[(p_)?PartitionQ, t_Integer] := Times @@ ((t + Flatten[content[p]])/Flatten[hooklength[p]]);
Table[Tr[ stanley[#,k] &/@ Partitions[n] ] , {n,12}, {k,n}]
A178300
Triangle T(n,k) = binomial(n+k-1,n) read by rows, 1 <= k <= n.
Original entry on oeis.org
1, 1, 3, 1, 4, 10, 1, 5, 15, 35, 1, 6, 21, 56, 126, 1, 7, 28, 84, 210, 462, 1, 8, 36, 120, 330, 792, 1716, 1, 9, 45, 165, 495, 1287, 3003, 6435, 1, 10, 55, 220, 715, 2002, 5005, 11440, 24310, 1, 11, 66, 286, 1001, 3003, 8008, 19448, 43758, 92378, 1, 12, 78, 364, 1365, 4368, 12376, 31824, 75582, 167960, 352716, 1, 13, 91, 455, 1820, 6188, 18564, 50388, 125970, 293930, 646646, 1352078
Offset: 1
Triangle begins
1;
1, 3;
1, 4, 10;
1, 5, 15, 35;
1, 6, 21, 56, 126;
1, 7, 28, 84, 210, 462;
1, 8, 36, 120, 330, 792, 1716;
T(3,3)=10 since there are 10 ways to put 3 identical balls into 3 distinguishable boxes, namely, (OOO)()(), ()(OOO)(), ()()(OOO), (OO)(O)(), (OO)()(O), (O)(OO)(), ()(OO)(O), (O)()(OO), ()(O)(OO), and (O)(O)(O). - _Dennis P. Walsh_, Apr 11 2012
For example, T(3,3)=10 since there are ten functions f:[2]->[4] that are nondecreasing, namely, <f(1),f(2)> = <1,1> or <1,2> or <1,3> or <1,4> or <2,2> or <2,3> or <2,4> or <3,3> or <3,4> or <4,4>. - _Dennis P. Walsh_, Apr 09 2016
-
// As triangle
[[Binomial(n+k-1,n): k in [1..n]]: n in [1.. 15]]; // Vincenzo Librandi, Jan 24 2016
-
seq(seq(binomial(n+k-1,n),k=1..n),n=1..15); # Dennis P. Walsh, Apr 11 2012
-
m[par_?PartitionQ, v_] := Block[{le = Length[par], it }, If[le > v, Return[0]]; it = Permutations[PadRight[par, v]]; Tr[ Apply[Times, Table[Subscript[x, j], {j, v}]^# & /@ it, {1}]]];
Table[Tr[(m[#, k] & /@ Partitions[l]) /. Subscript[x, ] -> 1], {l, 11}, {k, l}](* _Wouter Meeussen, Mar 11 2012 *)
Quiet[Needs["Combinatorica`"], All]; Grid[Table[Length[Combinatorica`Compositions[n, k]], {n, 10}, {k, n}]] (* L. Edson Jeffery, Jul 24 2014 *)
t[n_, k_] := Binomial[n + k - 1, n]; Table[ t[n, k], {n, 10}, {k, n}] // Flatten (* Robert G. Wilson v, Jul 24 2014 *)
A209671
a(n) = count of monomials, of degree k=n, in the elementary symmetric polynomials e(mu,k) summed over all partitions mu of n.
Original entry on oeis.org
1, 5, 37, 405, 5251, 84893, 1556535, 33175957, 785671039, 20841132255, 604829604655, 19236214748061, 661348833658423, 24554370466786319, 976242978063976162, 41477168810872793493, 1872694395510428040983, 89644070894632864643651, 4531712537608857605836563
Offset: 1
-
e[n_, v_] := Tr[Times @@@ Select[Subsets[Table[Subscript[x, j], {j, v}]], Length[#] == n &]]; e[par_?PartitionQ, v_] := Times @@ (e[#, v] & /@ par); Tr /@ Table[(e[#, l] & /@ Partitions[l]) /. Subscript[x, _] -> 1, {l, 10}]
A209667
a(n) = count of monomials, of degrees k=0 to n, in the complete homogeneous symmetric polynomials h(mu,k) summed over all partitions mu of n.
Original entry on oeis.org
1, 1, 9, 76, 902, 11635, 192205, 3450337, 73128340, 1696862300, 44414258862, 1264163699189, 39640715859359, 1340191402045395, 49097854149726795, 1924982506686743639, 80831323253459088871, 3607487926962810556542, 170964537623741430399076
Offset: 0
-
b:= proc(n, i, k) option remember; `if`(n=0, 1, `if`(i<1, 0,
add(b(n-i*j, i-1, k)*binomial(i+k-1, k-1)^j, j=0..n/i)))
end:
a:= n-> add(b(n$2, k), k=0..n):
seq(a(n), n=0..20); # Alois P. Heinz, Mar 04 2016
-
h[n_, v_] := Tr@ Apply[Times, Table[Subscript[x, j], {j, v}]^# & /@ Compositions[n, v], {1}]; h[par_?PartitionQ, v_] := Times @@ (h[#, v] & /@ par); Tr/@ Table[Tr[(h[#, k] & /@ Partitions[l]) /. Subscript[x, _] -> 1], {l, 10}, {k, l}]
A209670
a(n) = count of monomials, of degrees k=1 to n, in the elementary symmetric polynomials e(mu,k) summed over all partitions mu of n.
Original entry on oeis.org
1, 6, 48, 547, 7301, 120315, 2239803, 48278809, 1153934735, 30834749017, 900390736548, 28782727026031, 993911439932097, 37039780178206877, 1477457354215115765, 62950691931099382408, 2849385291187650049208, 136701569959985165325989, 6924379544998951633495956
Offset: 1
-
e[n_, v_] := Tr[Times @@@ Select[Subsets[Table[Subscript[x, j], {j, v}]], Length[#] == n &]]; e[par_?PartitionQ, v_] := Times @@ (e[#, v] & /@ par); Tr/@ Table[Tr[(e[#, k] & /@ Partitions[l]) /. Subscript[x, _] -> 1], {l, 10}, {k, l}]
A209774
Triangle of coefficients of polynomials v(n,x) jointly generated with A209773; see the Formula section.
Original entry on oeis.org
1, 2, 3, 2, 7, 8, 3, 12, 25, 21, 3, 19, 56, 84, 55, 4, 26, 103, 227, 269, 144, 4, 36, 169, 486, 848, 833, 377, 5, 45, 259, 914, 2078, 2999, 2518, 987, 5, 58, 372, 1565, 4393, 8277, 10192, 7475, 2584, 6, 69, 518, 2503, 8342, 19420, 31269, 33600, 21881
Offset: 1
First five rows:
1
2...3
2...7....8
3...12...25...21
3...19...56...84...55
First three polynomials v(n,x): 1, 2 + 3x , 2 + 7x + 8x^2.
-
u[1, x_] := 1; v[1, x_] := 1; z = 16;
u[n_, x_] := x*u[n - 1, x] + (x + 1)*v[n - 1, x];
v[n_, x_] := (x + 1)*u[n - 1, x] + 2 x*v[n - 1, x] + 1;
Table[Expand[u[n, x]], {n, 1, z/2}]
Table[Expand[v[n, x]], {n, 1, z/2}]
cu = Table[CoefficientList[u[n, x], x], {n, 1, z}];
TableForm[cu]
Flatten[%] (* A209773 *)
Table[Expand[v[n, x]], {n, 1, z}]
cv = Table[CoefficientList[v[n, x], x], {n, 1, z}];
TableForm[cv]
Flatten[%] (* A209774 *)
A209672
a(n) = count of monomials, of degrees k=1 to n, in the Schur symmetric polynomials s(mu,k) summed over all partitions mu of n.
Original entry on oeis.org
1, 5, 26, 165, 1093, 8203, 64516, 550766, 4911215, 46480657, 457372449, 4714813700, 50312993309, 557792410015, 6377533006104, 75321602836350, 914532538185703, 11422271100356431, 146273502952981364, 1920759273853147991, 25802956138975439144, 354546559878617075950
Offset: 1
-
(* see A191714 *)
Tr /@ Table[Tr[stanley[#, k] & /@ Partitions[n]], {n, 10}, {k, n}]
Showing 1-10 of 11 results.
Comments