cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A209673 a(n) = count of monomials, of degree k=n, in the Schur symmetric polynomials s(mu,k) summed over all partitions mu of n.

Original entry on oeis.org

1, 1, 4, 19, 116, 751, 5552, 43219, 366088, 3245311, 30569012, 299662672, 3079276708, 32773002718, 362512238272, 4136737592323, 48773665308176, 591313968267151, 7375591544495636, 94340754464144215, 1237506718985945656, 16608519982801477908, 228013066931927465872
Offset: 0

Views

Author

Wouter Meeussen, Mar 11 2012

Keywords

Comments

Main diagonal of triangle A191714.
a(n) is also the number of semistandard Young tableaux of size and maximal entry n. - Christian Stump, Oct 09 2015

Crossrefs

Programs

  • Mathematica
    (* see A191714 *)
    Tr /@ Table[(stanley[#, l] & /@ Partitions[l]), {l, 11}]
    (* or *)
    Table[SeriesCoefficient[1/((1-x)^(n*(n+1)/2) * (1+x)^(n*(n-1)/2)), {x, 0, n}], {n, 0, 25}] (* Vaclav Kotesovec, Aug 06 2025 *)

Extensions

a(12)-a(22) from Alois P. Heinz, Mar 11 2012
Typo in Mathematica program fixed by Vaclav Kotesovec, Mar 19 2015

A209667 a(n) = count of monomials, of degrees k=0 to n, in the complete homogeneous symmetric polynomials h(mu,k) summed over all partitions mu of n.

Original entry on oeis.org

1, 1, 9, 76, 902, 11635, 192205, 3450337, 73128340, 1696862300, 44414258862, 1264163699189, 39640715859359, 1340191402045395, 49097854149726795, 1924982506686743639, 80831323253459088871, 3607487926962810556542, 170964537623741430399076
Offset: 0

Views

Author

Wouter Meeussen, Mar 11 2012

Keywords

Crossrefs

Programs

  • Maple
    b:= proc(n, i, k) option remember; `if`(n=0, 1, `if`(i<1, 0,
          add(b(n-i*j, i-1, k)*binomial(i+k-1, k-1)^j, j=0..n/i)))
        end:
    a:= n-> add(b(n$2, k), k=0..n):
    seq(a(n), n=0..20);  # Alois P. Heinz, Mar 04 2016
  • Mathematica
    h[n_, v_] := Tr@ Apply[Times, Table[Subscript[x, j], {j, v}]^# & /@ Compositions[n, v], {1}]; h[par_?PartitionQ, v_] := Times @@ (h[#, v] & /@ par); Tr/@ Table[Tr[(h[#, k] & /@ Partitions[l]) /. Subscript[x, _] -> 1], {l, 10}, {k, l}]

Formula

Row sums of table A209666.

Extensions

a(0), a(11)-a(18) from Alois P. Heinz, Mar 04 2016
Showing 1-2 of 2 results.