A138178
Number of symmetric matrices with nonnegative integer entries and without zero rows or columns such that sum of all entries is equal to n.
Original entry on oeis.org
1, 1, 3, 9, 33, 125, 531, 2349, 11205, 55589, 291423, 1583485, 8985813, 52661609, 319898103, 2000390153, 12898434825, 85374842121, 580479540219, 4041838056561, 28824970996809, 210092964771637, 1564766851282299, 11890096357039749, 92151199272181629
Offset: 0
a(4) = 33 because there are 1 such matrix of type 1 X 1, 7 matrices of type 2 X 2, 15 of type 3 X 3 and 10 of type 4 X 4, cf. A138177.
From _Gus Wiseman_, Feb 23 2018: (Start)
The a(3) = 9 normal semistandard Young tableaux:
1 1 2 1 3 1 2 1 1 1 2 3 1 2 2 1 1 2 1 1 1
2 3 2 2 2
3
(End)
From _Gus Wiseman_, Nov 14 2018: (Start)
The a(4) = 33 matrices:
[4]
.
[30][21][20][11][10][02][01]
[01][10][02][11][03][20][12]
.
[200][200][110][101][100][100][100][100][011][010][010][010][001][001][001]
[010][001][100][010][020][011][010][001][100][110][101][100][020][010][001]
[001][010][001][100][001][010][002][011][100][001][010][002][100][101][110]
.
[1000][1000][1000][1000][0100][0100][0010][0010][0001][0001]
[0100][0100][0010][0001][1000][1000][0100][0001][0100][0010]
[0010][0001][0100][0010][0010][0001][1000][1000][0010][0100]
[0001][0010][0001][0100][0001][0010][0001][0100][1000][1000]
(End)
-
gf:= proc(j) local k, n; add(add((-1)^(n-k) *binomial(n, k) *(1-x)^(-k) *(1-x^2)^(-binomial(k, 2)), k=0..n), n=0..j) end: a:= n-> coeftayl(gf(n+1), x=0, n): seq(a(n), n=0..25); # Alois P. Heinz, Sep 25 2008
-
Table[Sum[SeriesCoefficient[1/(2^(k+1)*(1-x)^k*(1-x^2)^(k*(k-1)/2)),{x,0,n}],{k,0,Infinity}],{n,0,20}] (* Vaclav Kotesovec, Jul 03 2014 *)
multsubs[set_,k_]:=If[k==0,{{}},Join@@Table[Prepend[#,set[[i]]]&/@multsubs[Drop[set,i-1],k-1],{i,Length[set]}]]; Table[Length[Select[multsubs[Tuples[Range[n],2],n],And[Union[First/@#]==Range[Max@@First/@#],Union[Last/@#]==Range[Max@@Last/@#],Sort[Reverse/@#]==#]&]],{n,5}] (* Gus Wiseman, Nov 14 2018 *)
A210391
Number A(n,k) of semistandard Young tableaux over all partitions of n with maximal element <= k; square array A(n,k), n>=0, k>=0, read by antidiagonals.
Original entry on oeis.org
1, 1, 0, 1, 1, 0, 1, 2, 1, 0, 1, 3, 4, 1, 0, 1, 4, 9, 6, 1, 0, 1, 5, 16, 19, 9, 1, 0, 1, 6, 25, 44, 39, 12, 1, 0, 1, 7, 36, 85, 116, 69, 16, 1, 0, 1, 8, 49, 146, 275, 260, 119, 20, 1, 0, 1, 9, 64, 231, 561, 751, 560, 189, 25, 1, 0
Offset: 0
Square array A(n,k) begins:
1, 1, 1, 1, 1, 1, 1, ...
0, 1, 2, 3, 4, 5, 6, ...
0, 1, 4, 9, 16, 25, 36, ...
0, 1, 6, 19, 44, 85, 146, ...
0, 1, 9, 39, 116, 275, 561, ...
0, 1, 12, 69, 260, 751, 1812, ...
0, 1, 16, 119, 560, 1955, 5552, ...
Rows n=0-10 give:
A000012,
A001477,
A000290,
A005900,
A139594,
A210427,
A210428,
A210429,
A210430,
A210431,
A210432.
-
# First program:
h:= (l, k)-> mul(mul((k+j-i)/(1+l[i] -j +add(`if`(l[t]>=j, 1, 0)
, t=i+1..nops(l))), j=1..l[i]), i=1..nops(l)):
g:= proc(n, i, k, l)
`if`(n=0, h(l, k), `if`(i<1, 0, g(n, i-1, k, l)+
`if`(i>n, 0, g(n-i, i, k, [l[], i]))))
end:
A:= (n, k)-> `if`(n=0, 1, g(n, n, k, [])):
seq(seq(A(n, d-n), n=0..d), d=0..12);
# second program:
gf:= k-> 1/((1-x)^k*(1-x^2)^(k*(k-1)/2)):
A:= (n, k)-> coeff(series(gf(k), x, n+1), x, n):
seq(seq(A(n, d-n), n=0..d), d=0..12);
-
(* First program: *)
h[l_, k_] := Product[Product[(k+j-i)/(1+l[[i]]-j + Sum[If[l[[t]] >= j, 1, 0], {t, i+1, Length[l]}]), {j, 1, l[[i]]}], {i, 1, Length[l]}]; g [n_, i_, k_, l_] := If[n == 0, h[l, k], If[i < 1, 0, g[n, i-1, k, l] + If[i > n, 0, g[n-i, i, k, Append[l, i]]]]]; a[n_, k_] := If[n == 0, 1, g[n, n, k, {}]]; Table[Table[a[n, d-n], {n, 0, d}], {d, 0, 12}] // Flatten
(* second program: *)
gf[k_] := 1/((1-x)^k*(1-x^2)^(k*(k-1)/2)); a[n_, k_] := Coefficient[Series[gf[k], {x, 0, n+1}], x, n]; Table[Table[a[n, d-n], {n, 0, d}], {d, 0, 12}] // Flatten (* Jean-François Alcover, Dec 09 2013, translated from Maple *)
A161126
Triangle read by rows: T(n,k) is the number of involutions of {1,2,...,n} having k descents (n >= 1; 0 <= k < n).
Original entry on oeis.org
1, 1, 1, 1, 2, 1, 1, 4, 4, 1, 1, 6, 12, 6, 1, 1, 9, 28, 28, 9, 1, 1, 12, 57, 92, 57, 12, 1, 1, 16, 105, 260, 260, 105, 16, 1, 1, 20, 179, 630, 960, 630, 179, 20, 1, 1, 25, 289, 1397, 3036, 3036, 1397, 289, 25, 1, 1, 30, 444, 2836, 8471, 12132, 8471, 2836, 444, 30, 1, 1, 36
Offset: 1
T(4,2)=4 because we have 1432, 2143, 4231, and 3214.
Triangle starts:
01: 1
02: 1, 1
03: 1, 2, 1
04: 1, 4, 4, 1
05: 1, 6, 12, 6, 1
06: 1, 9, 28, 28, 9, 1
07: 1, 12, 57, 92, 57, 12, 1
08: 1, 16, 105, 260, 260, 105, 16, 1
09: 1, 20, 179, 630, 960, 630, 179, 20, 1
10: 1, 25, 289, 1397, 3036, 3036, 1397, 289, 25, 1
11: 1, 30, 444, 2836, 8471, 12132, 8471, 2836, 444, 30, 1
12: 1, 36, 659, 5434, 21529, 42417, 42417, 21529, 5434, 659, 36, 1
13: 1, 42, 945, 9828, 50423, 132146, 181734, 132146, 50423, 9828, 945, 42, 1
...
- Alois P. Heinz, Rows n = 1..141, flattened
- Richard A. Brualdi and Shi-Mei Ma, Enumeration of involutions by descents and symmetric matrices, European Journal of Combinatorics, vol. 43, pp. 220-228, (January 2015).
- J. Désarménien and D. Foata, Fonctions symétriques et séries hypergéometriques basiques multivariées, Bull. Soc. Math. France, 113, 1985, 3-22.
- Samantha Dahlberg, Combinatorial Proofs of Identities Involving Symmetric Matrices, arXiv:1410.7356 [math.CO], 2014-2017.
- I. M. Gessel and C. Reutenauer, Counting permutations with given cycle structure and descent set, J. Combin. Theory, Ser. A, 64, 1993, 189-215.
- V. J. W. Guo and J. Zeng, The Eulerian distribution on involutions is indeed unimodal, J. Combin. Theory, Ser. A, 113, 2006, 1061-1071.
-
P := proc (n) options operator, arrow: sort(simplify((1-t)^(n+1)*(sum(t^r*(sum(binomial((1/2)*r*(r+1)+k-1, k)*binomial(r+n-2*k, n-2*k), k = 0 .. floor((1/2)*n))), r = 0 .. infinity)))) end proc: for n to 12 do seq(coeff(P(n), t, j), j = 0 .. n-1) end do; # yields sequence in triangular form
T := proc(n, k) option remember; if k < 0 then 0 elif n <= k then 0 elif n = 1 and k = 0 then 1 elif n = 2 and k = 0 then 1 elif n = 2 and k = 1 then 1 else ((k+1)*T(n-1, k)+(n-k)*T(n-1, k-1)+((k+1)^2+n-2)*T(n-2, k)+(2*k*(n-k-1)-n+3)*T(n-2, k-1)+((n-k)^2+n-2)*T(n-2, k-2))/n end if end proc: for n to 12 do seq(T(n, k), k = 0 .. n-1) end do; # yields sequence in triangular form
-
P[n_, t_] := (1-t)^(n+1)*Sum[t^r*Binomial[n+r, n]*HypergeometricPFQ[{(1 - n)/2, -n/2, r(r+1)/2}, {(-n-r)/2, (1-n-r)/2}, 1], {r, 0, n}]; row[n_] := CoefficientList[P[n, t] + O[t]^n, t]; Table[row[n], {n, 1, 13}] // Flatten (* Jean-François Alcover, Dec 20 2016 *)
A266305
Number of n X n symmetric matrices with nonnegative integer entries and without zero rows or columns such that the sum of all entries is equal to 2n.
Original entry on oeis.org
1, 1, 7, 74, 1060, 19013, 408650, 10219360, 291158230, 9302358947, 329192040880, 12775809098058, 539351216354728, 24600280965461923, 1205263251360664310, 63115789721408960624, 3517483455875467926588, 207834769804597591153769, 12976002600530598793672490
Offset: 0
a(2) = 7:
[1 1] [2 1] [0 1] [2 0] [0 2] [3 0] [1 0]
[1 1] [1 0] [1 2] [0 2] [2 0] [0 1] [0 3].
-
gf:= k-> 1/((1-x)^k*(1-x^2)^(k*(k-1)/2)):
A:= (n, k)-> coeff(series(gf(k), x, n+1), x, n):
a:= n-> add(A(2*n, n-j)*(-1)^j*binomial(n, j), j=0..n):
seq(a(n), n=0..20);
-
gf[k_] := 1/((1-x)^k*(1-x^2)^(k*(k-1)/2)); A[n_, k_] := SeriesCoefficient[ gf[k], {x, 0, n}]; a[n_] := Sum[A[2*n, n-j]*(-1)^j*Binomial[n, j], {j, 0, n}]; Table[a[n], {n, 0, 20}] (* Jean-François Alcover, Feb 25 2017, translated from Maple *)
A268309
Number of n X n symmetric matrices with nonnegative integer entries and without zero rows or columns such that the sum of all entries is equal to n^2.
Original entry on oeis.org
1, 1, 7, 347, 83785, 85813461, 362302219609, 6227015262941276, 433865390872310453097, 122285854086662347886884837, 139236232279790897112737794283927, 639720298831885406784643598607618757713, 11848024220605180271987429760766015754937928643
Offset: 0
a(2) = 7:
[1 1] [2 1] [0 1] [2 0] [0 2] [3 0] [1 0]
[1 1] [1 0] [1 2] [0 2] [2 0] [0 1] [0 3].
-
gf:= k-> 1/((1-x)^k*(1-x^2)^(k*(k-1)/2)):
A:= (n, k)-> coeff(series(gf(k), x, n+1), x, n):
a:= n-> add(A(n^2, n-j)*(-1)^j*binomial(n, j), j=0..n):
seq(a(n), n=0..15);
-
gf[k_] := 1/((1-x)^k*(1-x^2)^(k*(k-1)/2)); A[n_, k_] := SeriesCoefficient[ gf[k], {x, 0, n}]; a[n_] := Sum[A[n^2, n-j]*(-1)^j*Binomial[n, j], {j, 0, n}]; Table[a[n], {n, 0, 15}] (* Jean-François Alcover, Feb 25 2017, translated from Maple *)
Showing 1-5 of 5 results.
Comments