A212959
Number of (w,x,y) such that w,x,y are all in {0,...,n} and |w-x| = |x-y|.
Original entry on oeis.org
1, 4, 11, 20, 33, 48, 67, 88, 113, 140, 171, 204, 241, 280, 323, 368, 417, 468, 523, 580, 641, 704, 771, 840, 913, 988, 1067, 1148, 1233, 1320, 1411, 1504, 1601, 1700, 1803, 1908, 2017, 2128, 2243, 2360, 2481, 2604, 2731, 2860, 2993, 3128, 3267
Offset: 0
a(1)=4 counts these (x,y,z): (0,0,0), (1,1,1), (0,1,0), (1,0,1).
Numbers congruent to {1, 3} mod 6: 1, 3, 7, 9, 13, 15, 19, ...
a(0) = 1;
a(1) = 1 + 3 = 4;
a(2) = 1 + 3 + 7 = 11;
a(3) = 1 + 3 + 7 + 9 = 20;
a(4) = 1 + 3 + 7 + 9 + 13 = 33;
a(5) = 1 + 3 + 7 + 9 + 13 + 15 = 48; etc. - _Philippe Deléham_, Mar 16 2014
- A. Barvinok, Lattice Points and Lattice Polytopes, Chapter 7 in Handbook of Discrete and Computational Geometry, CRC Press, 1997, 133-152.
- P. Gritzmann and J. M. Wills, Lattice Points, Chapter 3.2 in Handbook of Convex Geometry, vol. B, North-Holland, 1993, 765-797.
-
t = Compile[{{n, _Integer}}, Module[{s = 0},
(Do[If[Abs[w - x] == Abs[x - y], s = s + 1],
{w, 0, n}, {x, 0, n}, {y, 0, n}]; s)]];
m = Map[t[#] &, Range[0, 50]] (* A212959 *)
-
a(n)=(6*n^2+8*n+3)\/4 \\ Charles R Greathouse IV, Jul 28 2015
A001296
4-dimensional pyramidal numbers: a(n) = (3*n+1)*binomial(n+2, 3)/4. Also Stirling2(n+2, n).
Original entry on oeis.org
0, 1, 7, 25, 65, 140, 266, 462, 750, 1155, 1705, 2431, 3367, 4550, 6020, 7820, 9996, 12597, 15675, 19285, 23485, 28336, 33902, 40250, 47450, 55575, 64701, 74907, 86275, 98890, 112840, 128216, 145112, 163625, 183855, 205905, 229881, 255892, 284050, 314470
Offset: 0
G.f. = x + 7*x^2 + 25*x^3 + 65*x^4 + 140*x^5 + 266*x^6 + 462*x^7 + 750*x^8 + 1155*x^9 + ...
- M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards Applied Math. Series 55, 1964 (and various reprintings), p. 835.
- A. H. Beiler, Recreations in the Theory of Numbers, Dover, NY, 1964, p. 195.
- L. Comtet, Advanced Combinatorics, Reidel, 1974, p. 227, #16.
- S. J. Cyvin and I. Gutman, Kekulé structures in benzenoid hydrocarbons, Lecture Notes in Chemistry, No. 46, Springer, New York, 1988 (see p. 166, Table 10.4/I/3).
- F. N. David, M. G. Kendall and D. E. Barton, Symmetric Function and Allied Tables, Cambridge, 1966, p. 223.
- N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
- T. D. Noe, Table of n, a(n) for n = 0..1000
- M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards, Applied Math. Series 55, Tenth Printing, 1972 [alternative scanned copy].
- P. Aluffi, Degrees of projections of rank loci, arXiv:1408.1702 [math.AG], 2014. ["After compiling the results of many explicit computations, we noticed that many of the numbers d_{n,r,S} appear in the existing literature in contexts far removed from the enumerative geometry of rank conditions; we owe this surprising (to us) observation to perusal of [Slo14]."]
- S. Butler and P. Karasik, A note on nested sums, J. Int. Seq. 13 (2010), 10.4.4, page 5.
- M. Griffiths, Remodified Bessel Functions via Coincidences and Near Coincidences, Journal of Integer Sequences, Vol. 14 (2011), Article 11.7.1.
- L. Hogben, Choice and Chance by Cardpack and Chessboard, Vol. 1, Chanticleer Press, NY, 1950, p. 36.
- C. Krishnamachaki, The operator (xD)^n, J. Indian Math. Soc., 15 (1923),3-4. [Annotated scanned copy]
- Feihu Liu, Guoce Xin, and Chen Zhang, Ehrhart Polynomials of Order Polytopes: Interpreting Combinatorial Sequences on the OEIS, arXiv:2412.18744 [math.CO], 2024. See p. 29.
- T. Mansour, Restricted permutations by patterns of type 2-1, arXiv:math/0202219 [math.CO], 2002.
- Simon Plouffe, Approximations de séries génératrices et quelques conjectures, Dissertation, Université du Québec à Montréal, 1992; arXiv:0911.4975 [math.NT], 2009.
- Simon Plouffe, 1031 Generating Functions, Appendix to Thesis, Montreal, 1992
- Eric Weisstein's World of Mathematics, Stirling numbers of the 2nd kind.
- Index to sequences related to pyramidal numbers
- Index entries for linear recurrences with constant coefficients, signature (5,-10,10,-5,1).
a(n)=f(n, 2) where f is given in
A034261.
a(n)=
A093560(n+3, 4), (3, 1)-Pascal column.
Cf.
A220212 for a list of sequences produced by the convolution of the natural numbers with the k-gonal numbers.
-
/* A000027 convolved with A000326: */ A000326:=func; [&+[(n-i+1)*A000326(i): i in [0..n]]: n in [0..40]]; // Bruno Berselli, Dec 06 2012
-
[(3*n+1)*Binomial(n+2,3)/4: n in [0..40]]; // Vincenzo Librandi, Jul 30 2014
-
A001296:=-(1+2*z)/(z-1)**5; # Simon Plouffe in his 1992 dissertation for sequence without the leading zero
-
Table[n*(1+n)*(2+n)*(1+3*n)/24, {n, 0, 100}]
CoefficientList[Series[x (1 + 2 x)/(1 - x)^5, {x, 0, 40}], x] (* Vincenzo Librandi, Jul 30 2014 *)
Table[StirlingS2[n+2, n], {n, 0, 40}] (* Jean-François Alcover, Jun 24 2015 *)
Table[ListCorrelate[Accumulate[Range[n]],Range[n]],{n,0,40}]//Flatten (* or *) LinearRecurrence[{5,-10,10,-5,1},{0,1,7,25,65},40] (* Harvey P. Dale, Aug 14 2017 *)
-
t(n)=n*(n+1)/2
for(i=1,30,print1(","sum(j=1,i,j*t(j))))
-
{a(n) = n * (n+1) * (n+2) * (3*n+1) / 24}; /* Michael Somos, Sep 04 2017 */
-
[stirling_number2(n+2,n) for n in range(0,38)] # Zerinvary Lajos, Mar 14 2009
A006322
4-dimensional analog of centered polygonal numbers.
Original entry on oeis.org
1, 8, 31, 85, 190, 371, 658, 1086, 1695, 2530, 3641, 5083, 6916, 9205, 12020, 15436, 19533, 24396, 30115, 36785, 44506, 53383, 63526, 75050, 88075, 102726, 119133, 137431, 157760, 180265, 205096, 232408, 262361, 295120, 330855, 369741, 411958, 457691, 507130
Offset: 1
Albert Rich (Albert_Rich(AT)msn.com)
An illustration for a(5)=190: 5*(1+2+3+4+5)+4*(2+3+4+5)+3*(3+4+5)+2*(4+5)+1*(5) gives 75+56+36+18+5=190. - _J. M. Bergot_, Feb 13 2018
- S. J. Cyvin and I. Gutman, Kekulé structures in benzenoid hydrocarbons, Lecture Notes in Chemistry, No. 46, Springer, New York, 1988 (see p. 166, Table 10.4/I/4).
- Vincenzo Librandi, Table of n, a(n) for n = 1..1000
- Abderrahim Arabi, Hacène Belbachir, and Jean-Philippe Dubernard, Plateau Polycubes and Lateral Area, arXiv:1811.05707 [math.CO], 2018. See Column 2 Table 2 p. 9.
- Manfred Goebel, Rewriting Techniques and Degree Bounds for Higher Order Symmetric Polynomials, Applicable Algebra in Engineering, Communication and Computing (AAECC), Volume 9, Issue 6 (1999), 559-573.
- R. P. Stanley, Examples of Magic Labelings, Unpublished Notes, 1973 [Cached copy, with permission]. See p. 31.
- Index entries for linear recurrences with constant coefficients, signature (5,-10,10,-5,1).
-
List([1..40], n->5*Binomial(n+2,4) + Binomial(n+1,2)); # Muniru A Asiru, Feb 13 2018
-
[n*(n+1)*(5*n^2 +5*n +2)/24: n in [1..40]]; // G. C. Greubel, Sep 02 2019
-
a:=n->5*binomial(n+2,4) + binomial(n+1,2): seq(a(n), n=1..40); # Muniru A Asiru, Feb 13 2018
-
Table[5*Binomial[n+2, 4] + Binomial[n+1, 2], {n, 40}] (* Vladimir Joseph Stephan Orlovsky, Apr 18 2011 *)
CoefficientList[Series[(1+3x+x^2)/(1-x)^5, {x,0,40}], x] (* Vincenzo Librandi, Jun 09 2013 *)
LinearRecurrence[{5,-10,10,-5,1},{1,8,31,85,190},40] (* Harvey P. Dale, Sep 27 2016 *)
-
a(n)=n*(5*n^3+10*n^2+7*n+2)/24 \\ Charles R Greathouse IV, Dec 13 2011, corrected by Altug Alkan, Aug 15 2017
-
[n*(n+1)*(5*n^2 +5*n +2)/24 for n in (1..40)] # G. C. Greubel, Sep 02 2019
A061201
Partial sums of A007425: (tau<=)_3(n).
Original entry on oeis.org
1, 4, 7, 13, 16, 25, 28, 38, 44, 53, 56, 74, 77, 86, 95, 110, 113, 131, 134, 152, 161, 170, 173, 203, 209, 218, 228, 246, 249, 276, 279, 300, 309, 318, 327, 363, 366, 375, 384, 414, 417, 444, 447, 465, 483, 492, 495, 540, 546, 564, 573, 591, 594, 624, 633, 663
Offset: 1
- M. N. Huxley, Area, Lattice Points and Exponential Sums, Oxford, 1996; p. 239.
Cf. tau_2(n):
A000005, tau_3(n):
A007425, tau_4(n):
A007426, tau_5(n):
A061200, tau_6(n):
A034695, (unordered) 2-factorizations of n:
A038548, (unordered) 3-factorizations of n:
A034836,
A001055, (tau<=)_2(n):
A006218, (tau<=)_4(n):
A061202, (tau<=)_5(n):
A061203, (tau<=)_6(n):
A061204.
-
[&+[NumberOfDivisors(k)*Floor(n/k): k in [1..n]]: n in [1..56]]; // Bruno Berselli, Apr 13 2011
-
b:= proc(k, n) option remember; uses numtheory;
`if`(k=1, 1, add(b(k-1, d), d=divisors(n)))
end:
a:= proc(n) option remember; `if`(n=0, 0, b(3, n)+a(n-1)) end:
seq(a(n), n=1..76); # Alois P. Heinz, Oct 23 2023
-
a[n_] := Sum[ DivisorSigma[0, k]*Floor[n/k], {k, 1, n}]; Table[a[n], {n, 1, 56}] (* Jean-François Alcover, Sep 20 2011, after Benoit Cloitre *)
(* Asymptotics: *) n*(Log[n]^2/2 + (3*EulerGamma - 1)*Log[n] + 3*EulerGamma^2 - 3*EulerGamma - 3*StieltjesGamma[1] + 1) (* Vaclav Kotesovec, Sep 09 2018 *)
Accumulate[a[n_]:=DivisorSum[n, DivisorSigma[0, #]&]; Array[a, 60]] (* Vincenzo Librandi, Jan 12 2020 *)
-
a(n)=sum(k=1,n,numdiv(k)*floor(n/k)) \\ Benoit Cloitre, Apr 19 2007
-
{ for (n=1, 1000, write("b061201.txt", n, " ", sum(k=1, n, numdiv(k)*(n\k))) ) } \\ Harry J. Smith, Jul 18 2009
-
my(N=60, x='x+O('x^N)); Vec(sum(k=1, N, numdiv(k)*x^k/(1-x^k))/(1-x)) \\ Seiichi Manyama, Jul 24 2022
-
from math import isqrt
from sympy import integer_nthroot
def A061201(n): return (m:=integer_nthroot(n,3)[0])**3+3*sum(-(s:=isqrt(r:=n//i))**2+(sum(r//k for k in range(1,s+1))<<1)-sum(n//(i*j) for j in range(1,m+1)) for i in range(1,m+1)) # Chai Wah Wu, Oct 23 2023
A212508
Number of (w,x,y,z) with all terms in {1,...,n} and w<2x and y<3z.
Original entry on oeis.org
0, 1, 12, 56, 168, 418, 837, 1554, 2640, 4209, 6375, 9373, 13176, 18161, 24402, 32110, 41472, 52948, 66339, 82384, 101100, 122801, 147741, 176665, 209088, 246225, 287976, 334764, 386904, 445486, 509625, 581126, 659712, 745921
Offset: 0
- Index entries for linear recurrences with constant coefficients, signature (0, 2, 2, -1, -4, 0, 2, 0, -2, 0, 4, 1, -2, -2, 0, 1).
-
t = Compile[{{n, _Integer}}, Module[{s = 0}, (Do[If[w < 2 x && y < 3 z, s = s + 1], {w, 1, #}, {x, 1, #}, {y, 1, #}, {z, 1, #}] &[n]; s)]]; Map[t[#] &, Range[0, 50]] (* A212508 *)
Table[n^2/24 + n^3/3 + 5*n^4/8 - 1/12*Floor[n/6] - 1/4*n^2*Floor[n/3] - (n/12 + 5*n^2/12) * Floor[n/2] + 1/12*Floor[(1 + n)/6] + 1/4*n^2*Floor[(1 + n)/3], {n, 0, 50}] (* Vaclav Kotesovec, Dec 11 2015 *)
A212133
Number of (w,x,y,z) with all terms in {1,...,n} and median=mean.
Original entry on oeis.org
0, 1, 8, 33, 88, 185, 336, 553, 848, 1233, 1720, 2321, 3048, 3913, 4928, 6105, 7456, 8993, 10728, 12673, 14840, 17241, 19888, 22793, 25968, 29425, 33176, 37233, 41608, 46313, 51360, 56761, 62528, 68673, 75208, 82145, 89496, 97273, 105488, 114153, 123280
Offset: 0
a(2) counts these 4-tuples: (1,1,1,1), (1,1,2,2), (1,2,1,2), (2,1,1,2), (1,2,2,1), (2,1,2,1), (2,2,1,1), (2,2,2,2).
- Reinhard Zumkeller, Table of n, a(n) for n = 0..10000
- Z. Janelidze, F. van Niekerk, and J. Viljoen, What is the maximal connected partial symmetry index of a connected graph of a given size?, arXiv:2502.00704 [math.CO], 2025. See p. 4.
- Index entries for linear recurrences with constant coefficients, signature (4,-6,4,-1).
-
a212133 n = if n == 0 then 0 else (a005917 n + 1) `div` 2
-- Reinhard Zumkeller, Nov 13 2014
-
t = Compile[{{n, _Integer}},
Module[{s = 0}, (Do[If[Apply[Plus, Rest[Most[Sort[{w, x, y, z}]]]]/2 == (w + x + y + z)/4, s = s + 1], {w, 1, #}, {x, 1, #}, {y, 1, #}, {z, 1, #}] &[n]; s)]];
Flatten[Map[{t[#]} &, Range[0, 50]]] (* A212133 *)
(* Peter J. C. Moses, May 01 2012 *)
-
a(n)=2*n^3-3*n^2+2*n; \\ Joerg Arndt, Jun 22 2012
-
concat(0, Vec(x*(1 + 4*x + 7*x^2) / (1 - x)^4 + O(x^40))) \\ Colin Barker, Dec 02 2017
A212570
Number of (w,x,y,z) with all terms in {1,...,n} and |w-x|=|x-y|+|y-z|.
Original entry on oeis.org
0, 1, 6, 23, 52, 105, 178, 287, 424, 609, 830, 1111, 1436, 1833, 2282, 2815, 3408, 4097, 4854, 5719, 6660, 7721, 8866, 10143, 11512, 13025, 14638, 16407, 18284, 20329, 22490, 24831, 27296, 29953, 32742, 35735, 38868, 42217, 45714, 49439
Offset: 0
-
t = Compile[{{n, _Integer}}, Module[{s = 0},
(Do[If[Abs[w - x] == Abs[x - y] + Abs[y - z], s = s + 1],
{w, 1, #}, {x, 1, #}, {y, 1, #}, {z, 1, #}] &[n]; s)]];
Map[t[#] &, Range[0, 40]] (* A212570 *)
LinearRecurrence[{2,1,-4,1,2,-1},{0,1,6,23,52,105},40] (* Harvey P. Dale, Oct 02 2021 *)
A212103
Number of (w,x,y,z) with all terms in {1,...,n} and w = harmonic mean of {x,y,z}.
Original entry on oeis.org
0, 1, 2, 3, 10, 11, 30, 31, 38, 39, 52, 53, 84, 85, 86, 117, 124, 125, 144, 145, 200, 225, 226, 227, 282, 283, 284, 285, 334, 335, 420, 421, 428, 435, 436, 491, 546, 547, 548, 555, 634, 635, 726, 727, 758, 837, 838, 839, 936, 937, 956, 957, 970, 971
Offset: 0
a(4) counts these: (1,1,1,1), (2,1,4,4), (2,2,2,2), (2,4,1,4), (2,4,4,1), (3,2,4,4), (3,3,3,3), (3,4,2,4), (3,4,4,2), (4,4,4,4); e.g., (3,2,4,4) is included because it satisfies 3/w=1/x+1/y+1/z.
-
t = Compile[{{n, _Integer}}, Module[{s = 0},
(Do[If[w*(y*z + z*x + x*y) == 3 x*y*z, s = s + 1],
{w, 1, #}, {x, 1, #}, {y, 1, #}, {z, 1, #}] &[n]; s)]];
Map[t[#] &, Range[0, 60]] (* A212103 *)
(* Peter J. C. Moses, Apr 13 2012 *)
A212560
Number of (w,x,y,z) with all terms in {1,...,n} and w+x<=y+z.
Original entry on oeis.org
0, 1, 11, 50, 150, 355, 721, 1316, 2220, 3525, 5335, 7766, 10946, 15015, 20125, 26440, 34136, 43401, 54435, 67450, 82670, 100331, 120681, 143980, 170500, 200525, 234351, 272286, 314650, 361775, 414005, 471696, 535216, 604945, 681275
Offset: 0
-
t = Compile[{{n, _Integer}}, Module[{s = 0},
(Do[If[w + x <= y + z, s = s + 1],
{w, 1, #}, {x, 1, #}, {y, 1, #}, {z, 1, #}] &[n]; s)]];
Map[t[#] &, Range[0, 40]] (* A212560 *)
-
a(n)=(n+2*n^3+3*n^4)/6 \\ Charles R Greathouse IV, Oct 21 2022
A212714
Number of (w,x,y,z) with all terms in {1,...,n} and |w-x| >= w + |y-z|.
Original entry on oeis.org
0, 0, 2, 10, 32, 78, 162, 300, 512, 820, 1250, 1830, 2592, 3570, 4802, 6328, 8192, 10440, 13122, 16290, 20000, 24310, 29282, 34980, 41472, 48828, 57122, 66430, 76832, 88410, 101250, 115440, 131072, 148240, 167042, 187578, 209952
Offset: 0
-
I:=[0,0,2,10,32,78]; [n le 6 select I[n] else 4*Self(n-1)-5*Self(n-2)+5*Self(n-4)-4*Self(n-5)+Self(n-6): n in [1..40]]; // Vincenzo Librandi, Aug 02 2013
-
t = Compile[{{n, _Integer}}, Module[{s = 0},
(Do[If[Abs[w - x] >= w + Abs[y - z], s = s + 1],
{w, 1, #}, {x, 1, #}, {y, 1, #}, {z, 1, #}] &[n]; s)]];
Map[t[#] &, Range[0, 40]] (* A212714 *)
%/2 (* A011864 except for offset *)
LinearRecurrence[{4, -5, 0, 5, -4, 1}, {0, 0, 2, 10, 32, 78}, 40]
CoefficientList[Series[(2 x^2 + 2 x^3 + 2 x^4) / (1 - 4 x + 5 x^2 - 5 x^4 + 4 x^5 - x^6), {x, 0, 80}], x] (* Vincenzo Librandi, Aug 02 2013 *)
Showing 1-10 of 202 results.
Comments