cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 22 results. Next

A000332 Binomial coefficient binomial(n,4) = n*(n-1)*(n-2)*(n-3)/24.

Original entry on oeis.org

0, 0, 0, 0, 1, 5, 15, 35, 70, 126, 210, 330, 495, 715, 1001, 1365, 1820, 2380, 3060, 3876, 4845, 5985, 7315, 8855, 10626, 12650, 14950, 17550, 20475, 23751, 27405, 31465, 35960, 40920, 46376, 52360, 58905, 66045, 73815, 82251, 91390, 101270, 111930, 123410
Offset: 0

Views

Author

Keywords

Comments

Number of intersection points of diagonals of convex n-gon where no more than two diagonals intersect at any point in the interior.
Also the number of equilateral triangles with vertices in an equilateral triangular array of points with n rows (offset 1), with any orientation. - Ignacio Larrosa Cañestro, Apr 09 2002. [See Les Reid link for proof. - N. J. A. Sloane, Apr 02 2016] [See Peter Kagey link for alternate proof. - Sameer Gauria, Jul 29 2025]
Start from cubane and attach amino acids according to the reaction scheme that describes the reaction between the active sites. See the hyperlink on chemistry. - Robert G. Wilson v, Aug 02 2002
For n>0, a(n) = (-1/8)*(coefficient of x in Zagier's polynomial P_(2n,n)). (Zagier's polynomials are used by PARI/GP for acceleration of alternating or positive series.)
Figurate numbers based on the 4-dimensional regular convex polytope called the regular 4-simplex, pentachoron, 5-cell, pentatope or 4-hypertetrahedron with Schlaefli symbol {3,3,3}. a(n)=((n*(n-1)*(n-2)*(n-3))/4!). - Michael J. Welch (mjw1(AT)ntlworld.com), Apr 01 2004, R. J. Mathar, Jul 07 2009
Maximal number of crossings that can be created by connecting n vertices with straight lines. - Cameron Redsell-Montgomerie (credsell(AT)uoguelph.ca), Jan 30 2007
If X is an n-set and Y a fixed (n-1)-subset of X then a(n) is equal to the number of 4-subsets of X intersecting Y. - Milan Janjic, Aug 15 2007
Product of four consecutive numbers divided by 24. - Artur Jasinski, Dec 02 2007
The only prime in this sequence is 5. - Artur Jasinski, Dec 02 2007
For strings consisting entirely of 0's and 1's, the number of distinct arrangements of four 1's such that 1's are not adjacent. The shortest possible string is 7 characters, of which there is only one solution: 1010101, corresponding to a(5). An eight-character string has 5 solutions, nine has 15, ten has 35 and so on, congruent to A000332. - Gil Broussard, Mar 19 2008
For a(n)>0, a(n) is pentagonal if and only if 3 does not divide n. All terms belong to the generalized pentagonal sequence (A001318). Cf. A000326, A145919, A145920. - Matthew Vandermast, Oct 28 2008
Nonzero terms = row sums of triangle A158824. - Gary W. Adamson, Mar 28 2009
Except for the 4 initial 0's, is equivalent to the partial sums of the tetrahedral numbers A000292. - Jeremy Cahill (jcahill(AT)inbox.com), Apr 15 2009
If the first 3 zeros are disregarded, that is, if one looks at binomial(n+3, 4) with n>=0, then it becomes a 'Matryoshka doll' sequence with alpha=0: seq(add(add(add(i,i=alpha..k),k=alpha..n),n=alpha..m),m=alpha..50). - Peter Luschny, Jul 14 2009
For n>=1, a(n) is the number of n-digit numbers the binary expansion of which contains two runs of 0's. - Vladimir Shevelev, Jul 30 2010
For n>0, a(n) is the number of crossing set partitions of {1,2,..,n} into n-2 blocks. - Peter Luschny, Apr 29 2011
The Kn3, Ca3 and Gi3 triangle sums of A139600 are related to the sequence given above, e.g., Gi3(n) = 2*A000332(n+3) - A000332(n+2) + 7*A000332(n+1). For the definitions of these triangle sums, see A180662. - Johannes W. Meijer, Apr 29 2011
For n > 3, a(n) is the hyper-Wiener index of the path graph on n-2 vertices. - Emeric Deutsch, Feb 15 2012
Except for the four initial zeros, number of all possible tetrahedra of any size, having the same orientation as the original regular tetrahedron, formed when intersecting the latter by planes parallel to its sides and dividing its edges into n equal parts. - V.J. Pohjola, Aug 31 2012
a(n+3) is the number of different ways to color the faces (or the vertices) of a regular tetrahedron with n colors if we count mirror images as the same.
a(n) = fallfac(n,4)/4! is also the number of independent components of an antisymmetric tensor of rank 4 and dimension n >= 1. Here fallfac is the falling factorial. - Wolfdieter Lang, Dec 10 2015
Does not satisfy Benford's law [Ross, 2012] - N. J. A. Sloane, Feb 12 2017
Number of chiral pairs of colorings of the vertices (or faces) of a regular tetrahedron with n available colors. Chiral colorings come in pairs, each the reflection of the other. - Robert A. Russell, Jan 22 2020
From Mircea Dan Rus, Aug 26 2020: (Start)
a(n+3) is the number of lattice rectangles (squares included) in a staircase of order n; this is obtained by stacking n rows of consecutive unit lattice squares, aligned either to the left or to the right, which consist of 1, 2, 3, ..., n squares and which are stacked either in the increasing or in the decreasing order of their lengths. Below, there is a staircase or order 4 which contains a(7) = 35 rectangles. [See the Teofil Bogdan and Mircea Dan Rus link, problem 3, under A004320]
_
||
|||_
|||_|_
|||_|_|
(End)
a(n+4) is the number of strings of length n on an ordered alphabet of 5 letters where the characters in the word are in nondecreasing order. E.g., number of length-2 words is 15: aa,ab,ac,ad,ae,bb,bc,bd,be,cc,cd,ce,dd,de,ee. - Jim Nastos, Jan 18 2021
From Tom Copeland, Jun 07 2021: (Start)
Aside from the zeros, this is the fifth diagonal of the Pascal matrix A007318, the only nonvanishing diagonal (fifth) of the matrix representation IM = (A132440)^4/4! of the differential operator D^4/4!, when acting on the row vector of coefficients of an o.g.f., or power series.
M = e^{IM} is the matrix of coefficients of the Appell sequence p_n(x) = e^{D^4/4!} x^n = e^{b. D} x^n = (b. + x)^n = Sum_{k=0..n} binomial(n,k) b_n x^{n-k}, where the (b.)^n = b_n have the e.g.f. e^{b.t} = e^{t^4/4!}, which is that for A025036 aerated with triple zeros, the first column of M.
See A099174 and A000292 for analogous relationships for the third and fourth diagonals of the Pascal matrix. (End)
For integer m and positive integer r >= 3, the polynomial a(n) + a(n + m) + a(n + 2*m) + ... + a(n + r*m) in n has its zeros on the vertical line Re(n) = (3 - r*m)/2 in the complex plane. - Peter Bala, Jun 02 2024

Examples

			a(5) = 5 from the five independent components of an antisymmetric tensor A of rank 4 and dimension 5, namely A(1,2,3,4), A(1,2,3,5), A(1,2,4,5), A(1,3,4,5) and A(2,3,4,5). See the Dec 10 2015 comment. - _Wolfdieter Lang_, Dec 10 2015
		

References

  • M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards Applied Math. Series 55, 1964 (and various reprintings), p. 828.
  • A. H. Beiler, Recreations in the Theory of Numbers, Dover, NY, 1964, p. 196.
  • L. Comtet, Advanced Combinatorics, Reidel, 1974, p. 74, Problem 8.
  • John H. Conway and Richard K. Guy, The Book of Numbers, New York: Springer-Verlag, 1996. See p. 70.
  • L. E. Dickson, History of the Theory of Numbers. Carnegie Institute Public. 256, Washington, DC, Vol. 1, 1919; Vol. 2, 1920; Vol. 3, 1923, see vol. 2, p. 7.
  • Jan Gullberg, Mathematics from the Birth of Numbers, W. W. Norton & Co., NY & London, 1997, §8.6 Figurate Numbers, p. 294.
  • J. C. P. Miller, editor, Table of Binomial Coefficients. Royal Society Mathematical Tables, Vol. 3, Cambridge Univ. Press, 1954.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
  • Charles W. Trigg, Mathematical Quickies, New York: Dover Publications, Inc., 1985, p. 53, #191.
  • David Wells, The Penguin Dictionary of Curious and Interesting Numbers. Penguin Books, NY, 1986, Revised edition 1987. See p. 127.

Crossrefs

binomial(n, k): A161680 (k = 2), A000389 (k = 5), A000579 (k = 6), A000580 (k = 7), A000581 (k = 8), A000582 (k = 9).
Cf. A000217, A000292, A007318 (column k = 4).
Cf. A158824.
Cf. A006008 (Number of ways to color the faces (or vertices) of a regular tetrahedron with n colors when mirror images are counted as two).
Cf. A104712 (third column, k=4).
See A269747 for a 3-D analog.
Cf. A006008 (oriented), A006003 (achiral) tetrahedron colorings.
Row 3 of A325000, col. 4 of A007318.

Programs

  • GAP
    A000332 := List([1..10^2], n -> Binomial(n, 4)); # Muniru A Asiru, Oct 16 2017
    
  • Magma
    [Binomial(n,4): n in [0..50]]; // Vincenzo Librandi, Nov 23 2014
    
  • Maple
    A000332 := n->binomial(n,4); [seq(binomial(n,4), n=0..100)];
  • Mathematica
    Table[ Binomial[n, 4], {n, 0, 45} ] (* corrected by Harvey P. Dale, Aug 22 2011 *)
    Table[(n-4)(n-3)(n-2)(n-1)/24, {n, 100}] (* Artur Jasinski, Dec 02 2007 *)
    LinearRecurrence[{5,-10,10,-5,1}, {0,0,0,0,1}, 45] (* Harvey P. Dale, Aug 22 2011 *)
    CoefficientList[Series[x^4 / (1 - x)^5, {x, 0, 40}], x] (* Vincenzo Librandi, Nov 23 2014 *)
  • PARI
    a(n)=binomial(n,4);
    
  • Python
    # Starts at a(3), i.e. computes n*(n+1)*(n+2)*(n+3)/24
    # which is more in line with A000217 and A000292.
    def A000332():
        x, y, z, u = 1, 1, 1, 1
        yield 0
        while True:
            yield x
            x, y, z, u = x + y + z + u + 1, y + z + u + 1, z + u + 1, u + 1
    a = A000332(); print([next(a) for i in range(41)]) # Peter Luschny, Aug 03 2019
    
  • Python
    print([n*(n-1)*(n-2)*(n-3)//24 for n in range(50)])
    # Gennady Eremin, Feb 06 2022

Formula

a(n) = n*(n-1)*(n-2)*(n-3)/24.
G.f.: x^4/(1-x)^5. - Simon Plouffe in his 1992 dissertation
a(n) = n*a(n-1)/(n-4). - Benoit Cloitre, Apr 26 2003, R. J. Mathar, Jul 07 2009
a(n) = Sum_{k=1..n-3} Sum_{i=1..k} i*(i+1)/2. - Benoit Cloitre, Jun 15 2003
Convolution of natural numbers {1, 2, 3, 4, ...} and A000217, the triangular numbers {1, 3, 6, 10, ...}. - Jon Perry, Jun 25 2003
a(n) = A110555(n+1,4). - Reinhard Zumkeller, Jul 27 2005
a(n+1) = ((n^5-(n-1)^5) - (n^3-(n-1)^3))/24 - (n^5-(n-1)^5-1)/30; a(n) = A006322(n-2)-A006325(n-1). - Xavier Acloque, Oct 20 2003; R. J. Mathar, Jul 07 2009
a(4*n+2) = Pyr(n+4, 4*n+2) where the polygonal pyramidal numbers are defined for integers A>2 and B>=0 by Pyr(A, B) = B-th A-gonal pyramid number = ((A-2)*B^3 + 3*B^2 - (A-5)*B)/6; For all positive integers i and the pentagonal number function P(x) = x*(3*x-1)/2: a(3*i-2) = P(P(i)) and a(3*i-1) = P(P(i) + i); 1 + 24*a(n) = (n^2 + 3*n + 1)^2. - Jonathan Vos Post, Nov 15 2004
First differences of A000389(n). - Alexander Adamchuk, Dec 19 2004
For n > 3, the sum of the first n-2 tetrahedral numbers (A000292). - Martin Steven McCormick (mathseq(AT)wazer.net), Apr 06 2005 [Corrected by Doug Bell, Jun 25 2017]
Starting (1, 5, 15, 35, ...), = binomial transform of [1, 4, 6, 4, 1, 0, 0, 0, ...]. - Gary W. Adamson, Dec 28 2007
Sum_{n>=4} 1/a(n) = 4/3, from the Taylor expansion of (1-x)^3*log(1-x) in the limit x->1. - R. J. Mathar, Jan 27 2009
A034263(n) = (n+1)*a(n+4) - Sum_{i=0..n+3} a(i). Also A132458(n) = a(n)^2 - a(n-1)^2 for n>0. - Bruno Berselli, Dec 29 2010
a(n) = 5*a(n-1) - 10*a(n-2) + 10*a(n-3) - 5*a(n-4) + a(n-5); a(0)=0, a(1)=0, a(2)=0, a(3)=0, a(4)=1. - Harvey P. Dale, Aug 22 2011
a(n) = (binomial(n-1,2)^2 - binomial(n-1,2))/6. - Gary Detlefs, Nov 20 2011
a(n) = Sum_{k=1..n-2} Sum_{i=1..k} i*(n-k-2). - Wesley Ivan Hurt, Sep 25 2013
a(n) = (A000217(A000217(n-2) - 1))/3 = ((((n-2)^2 + (n-2))/2)^2 - (((n-2)^2 + (n-2))/2))/(2*3). - Raphie Frank, Jan 16 2014
Sum_{n>=0} a(n)/n! = e/24. Sum_{n>=3} a(n)/(n-3)! = 73*e/24. See A067764 regarding the second ratio. - Richard R. Forberg, Dec 26 2013
Sum_{n>=4} (-1)^(n+1)/a(n) = 32*log(2) - 64/3 = A242023 = 0.847376444589... . - Richard R. Forberg, Aug 11 2014
4/(Sum_{n>=m} 1/a(n)) = A027480(m-3), for m>=4. - Richard R. Forberg, Aug 12 2014
E.g.f.: x^4*exp(x)/24. - Robert Israel, Nov 23 2014
a(n+3) = C(n,1) + 3*C(n,2) + 3*C(n,3) + C(n,4). Each term indicates the number of ways to use n colors to color a tetrahedron with exactly 1, 2, 3, or 4 colors.
a(n) = A080852(1,n-4). - R. J. Mathar, Jul 28 2016
From Gary W. Adamson, Feb 06 2017: (Start)
G.f.: Starting (1, 5, 14, ...), x/(1-x)^5 can be written
as (x * r(x) * r(x^2) * r(x^4) * r(x^8) * ...) where r(x) = (1+x)^5;
as (x * r(x) * r(x^3) * r(x^9) * r(x^27) * ...) where r(x) = (1+x+x^2)^5;
as (x * r(x) * r(x^4) * r(x^16) * r(x^64) * ...) where r(x) = (1+x+x^2+x^3)^5;
... (as a conjectured infinite set). (End)
From Robert A. Russell, Jan 22 2020: (Start)
a(n) = A006008(n) - a(n+3) = (A006008(n) - A006003(n)) / 2 = a(n+3) - A006003(n).
a(n+3) = A006008(n) - a(n) = (A006008(n) + A006003(n)) / 2 = a(n) + A006003(n).
a(n) = A007318(n,4).
a(n+3) = A325000(3,n). (End)
Product_{n>=5} (1 - 1/a(n)) = cosh(sqrt(15)*Pi/2)/(100*Pi). - Amiram Eldar, Jan 21 2021

Extensions

Some formulas that referred to another offset corrected by R. J. Mathar, Jul 07 2009

A211795 Number of (w,x,y,z) with all terms in {1,...,n} and w*x < 2*y*z.

Original entry on oeis.org

0, 1, 11, 58, 177, 437, 894, 1659, 2813, 4502, 6836, 10008, 14121, 19449, 26117, 34372, 44422, 56597, 71044, 88160, 108115, 131328, 158074, 188773, 223604, 263172, 307719, 357715, 413493, 475690, 544480, 620632, 704381, 796413
Offset: 0

Views

Author

Clark Kimberling, Apr 27 2012

Keywords

Comments

Each sequence in the following guide counts 4-tuples
(w,x,y,z) such that the indicated relation holds and the four numbers w,x,y,z are in {1,...,n}. The notation "m div" means that m divides every term of the sequence.
A211058 ... wx <= yz
A211787 ... wx <= 2yz
A211795 ... wx < 2yz
A211797 ... wx > 2yz
A211809 ... wx >= 2yz
A211812 ... wx <= 3yz
A211917 ... wx < 3yz
A211918 ... wx > 3yz
A211919 ... wx >= 3yz
A211920 ... 2wx < 3yz
A211921 ... 2wx <= 3yz
A211922 ... 2wx > 3yz
A211923 ... 2wx >= 3yz
A212019 ... wx = 2yz ..... 2 div
A212020 ... wx = 3yz ..... 2 div
A212021 ... 2wx = 3yz .... 2 div
A212047 ... wx = 4yz
A212048 ... 3wx = 4yz .... 2 div
A212049 ... wx = 5yz ..... 2 div
A212050 ... 2wx = 5yz .... 2 div
A212051 ... 3wx = 5yz .... 2 div
A212052 ... 4wx = 5yz .... 2 div
A209978 ... wx = yz + 1 .. 2 div
A212053 ... wx <= yz + 1
A212054 ... wx > yz + 1
A212055 ... wx <= yz + 2
A212056 ... wx > yz + 2
A197168 ... wx = yz + 2 .. 2 div
A061201 ... w = xyz
A212057 ... w < xyz
A212058 ... w >= xyz
A212059 ... w = xyz - 1
A212060 ... w = xyz - 2
A212061 ... wx = (yz)^2
A212062 ... w^2 = xyz
A212063 ... w^2 < xyz
A212064 ... w^2 >= xyz
A212065 ... w^2 <= xyz
A212066 ... w^2 > xyz
A212067 ... w^3 = xyz
A002623 ... w = 2x + y + z
A006918 ... w = 2x + 2y + z
A000601 ... w = x + 2y + 3z (except for initial 0's)
A212068 ... 2w = x + y + z
A212069 ... 3w = x + y + z (w = average{x,y,z})
A212088 ... 3w < x + y + z
A212089 ... 3w >= x + y + z
A212090 ... w < x + y + z
A000332 ... w >= x + y + z
A212145 ... w < 2x + y + z
A001752 ... w >= 2x + y + z
A001400 ... w = 2x +3y + 4z
A005900 ... w = -x + y + z
A192023 ... w = -x + y + z + 2
A212091 ... w^2 = x^2 + y^2 + z^2 ... 3 div
A212087 ... w^2 + x^2 = y^2 + z^2
A212092 ... w^2 < x^2 + y^2 + z^2
A212093 ... w^2 <= x^2 + y^2 + z^2
A212094 ... w^2 > x^2 + y^2 + z^2
A212095 ... w^2 >= x^2 + y^2 + z^2
A212096 ... w^3 = x^3 + y^3 + z^3 ... 6 div
A212097 ... w^3 < x^3 + y^3 + z^3
A212098 ... w^3 <= x^3 + y^3 + z^3
A212099 ... w^3 > x^3 + y^3 + z^3
A212100 ... w^3 >= x^3 + y^3 + z^3
A212101 ... wx^2 = yz^2
A212102 ... 1/w = 1/x + 1/y + 1/z
A212103 ... 3/w = 1/x + 1/y + 1/z; w = h.m. of {x,y,z}
A212104 ... 3/w >= 1/x + 1/y + 1/z; w >= h.m.
A212105 ... 3/w < 1/x + 1/y + 1/z; w < h.m.
A212106 ... 3/w > 1/x + 1/y + 1/z; w > h.m.
A212107 ... 3/w <= 1/x + 1/y + 1/z; w <= h.m.
A212133 ... median(w,x,y,z) = mean(w,x,y,z)
A212134 ... median(w,x,y,z) <= mean(w,x,y,z)
A212135 ... median(w,x,y,z) > mean(w,x,y,z)
A212241 ... wx + yz > n
A212243 ... 2wx + yz = n
A212244 ... w = xyz - n
A212245 ... w = xyz - 2n
A212246 ... 2w = x + y + z - n
A212247 ... 3w = x + y + z + n
A212249 ... 3w < x + y + z + n
A212250 ... 3w >= x + y + z + n
A212251 ... 3w = x + y + z + n + 1
A212252 ... 3w = x + y + z + n + 2
A212254 ... w = x + 2y + 3z - n
A212255 ... w^2 = mean(x^2, y^2, z^2)
A212256 ... 4/w = 1/x + 1/y +1/z + 1/n
In the list above, if the relation in the second column is of the form "w rel ax + by + cz" then the sequence is linearly recurrent. In the list below, the same is true for expressions involving more than one relation.
A000332 ... w < x <= y < z .... C(n,4)
A000914 ... w < x <= y < z .... Stirling 1st kind
A000914 ... w < x <= y >= z ... Stirling 1st kind
A050534 ... w < x < y >= z .... tritriangular
A001296 ... w <= x <= y >= z .. 4-dim pyramidal
A006322 ... x < x > y >= z
A002418 ... w < x >= y < z
A050534 ... w < x >=y >= z
A212415 ... w < x >= y <= z
A001296 ... w < x >= y <= z
A212246 ... w <= x > y <= z
A006322 ... w <= x >= y <= z
A212501 ... w > x < y >= z
A212503 ... w < 2x and y < 2z ..... A (note below)
A212504 ... w < 2x and y > 2z ..... A
A212505 ... w < 2x and y >= 2z .... A
A212506 ... w <= 2x and y <= 2z ... A
A212507 ... w < 2x and y <= 2z .... B
A212508 ... w < 2x and y < 3z ..... C
A212509 ... w < 2x and y <= 3z .... C
A212510 ... w < 2x and y > 3z ..... C
A212511 ... w < 2x and y >= 3z .... C
A212512 ... w <= 2x and y < 3z .... C
A212513 ... w <= 2x and y <= 3z ... C
A212514 ... w <= 2x and y > 3z .... C
A212515 ... w <= 2x and y >= 3z ... C
A212516 ... w > 2x and y < 3z ..... C
A212517 ... w > 2x and y <= 3z .... C
A212518 ... w > 2x and y > 3z ..... C
A212519 ... w > 2x and y >= 3z .... C
A212520 ... w >= 2x and y < 3z .... C
A212521 ... w >= 2x and y <= 3z ... C
A212522 ... w >= 2x and y > 3z .... C
A212523 ... w + x < y + z
A212560 ... w + x <= y + z
A212561 ... w + x = 2y + 2z
A212562 ... w + x < 2y + 2z ....... B
A212563 ... w + x <= 2y + 2z ...... B
A212564 ... w + x > 2y + 2z ....... B
A212565 ... w + x >= 2y + 2z ...... B
A212566 ... w + x = 3y + 3z
A212567 ... 2w + 2x = 3y + 3z
A212570 ... |w - x| = |x - y| + |y - z|
A212571 ... |w - x| < |x - y| + |y - z| ... B ... 4 div
A212572 ... |w - x| <= |x - y| + |y - z| .. B
A212573 ... |w - x| > |x - y| + |y - z| ... B ... 2 div
A212574 ... |w - x| >= |x - y| + |y - z| .. B
A212575 ... 2|w - x| = |x - y| + |y - z|
A212576 ... |w - x| = 2|x - y| + 2|y - z|
A212577 ... |w - x| = 2|x - y| - |y - z|
A212578 ... 2|w - x| = |x - y| - |y - z|
A212579 ... min{|w-x|,|w-y|} = min{|x-y|,|x-z|}
A212692 ... w = |x - y| + |y - z| ............... 2 div
A212568 ... w < |x - y| + |y - z| ............... 2 div
A212573 ... w <= |x - y| + |y - z| .............. 2 div
A212574 ... w > |x - y| + |y - z|
A212575 ... w >= |x - y| + |y - z|
A212676 ... w + x = |x - y| + |y - z| ......... H
A212677 ... w + y = |x - y| + |y - z|
A212678 ... w + x + y = |x - y| + |y - z|
A006918 ... w + x + y + z = |x - y| + |y - z| . H
A212679 ... |x - y| = |y - z| ................. H
A212680 ... |x - y| = |y - z| + 1 ..............H 2 div
A212681 ... |x - y| < |y - z| ................... 2 div
A212682 ... |x - y| >= |y - z|
A212683 ... |x - y| = w + |y - z| ............... 2 div
A212684 ... |x - y| = n - w + |y - z|
A212685 ... |w - x| = w + |y - z|
A186707 ... |w - x| < w + |y - z| ... (Note D)
A212714 ... |w - x| >= w + |y - z| .......... H . 2 div
A212686 ... 2*|w - x| = n + |y - z| ............. 4 div
A212687 ... 2*|w - x| < n + |y - z| ......... B
A212688 ... 2*|w - x| < n + |y - z| ......... B . 2 div
A212689 ... 2*|w - x| > n + |y - z| ......... B . 2 div
A212690 ... 2*|w - x| <= n + |y - z| ........ B
A212691 ... w + |x - y| = |x - z| + |y - z| . E . 2 div
...
In the above lists, all the terms of (w,x,y,z) are in {1,...,n}, but in the next lists they are all in {0,...,n}, and sequences are all linearly recurrent.
R=range{w,x,y,z}=max{w,x,y,z}-min{w,x,y,z}.
A212740 ... max{w,x,y,z} < 2*min{w,x,y,z} .... A
A212741 ... max{w,x,y,z} >= 2*min{w,x,y,z} ... A
A212742 ... max{w,x,y,z} <= 2*min{w,x,y,z} ... A
A212743 ... max{w,x,y,z} > 2*min{w,x,y,z} .... A . 2 div
A212744 ... w=range (=max-min) ............... E
A212745 ... w=max{w,x,y,z} - 2*min{w,x,y,z}
A212746 ... R is in {w,x,y,z} ................ E
A212569 ... R is not in {w,x,y,z} ............ E
A212749 ... w=R or x
A212750 ... w=R or x=R or y
A212751 ... w=R or x=R or y
A212752 ... wR ......... A
A212753 ... wR or z>R ......... D
A212754 ... wR or y>R or z>R ......... D
A002415 ... w = x + R ........................ D
A212755 ... |w - x| = R ...................... D
A212756 ... 2w = x + R
A212757 ... 2w = R
A212758 ... w = floor(R/2)
A002413 ... w = floor((x+y+z/2))
A212759 ... w, x, y are even
A212760 ... w is even and x = y + z .......... E
A212761 ... w is odd and x and y are even .... F . 2 div
A212762 ... w and x are odd y is even ........ F . 2 div
A212763 ... w, x, y are odd .................. F
A212764 ... w, x, y are even and z is odd .... F
A030179 ... w and x are even and y and z odd
A212765 ... w is even and x,y,z are odd ...... F
A212766 ... w is even and x is odd ........... A . 2 div
A212767 ... w and x are even and w+x=y+z ..... E
A212889 ... R is even ........................ A
A212890 ... R is odd ......................... A . 2 div
A212742 ... w-x, x-y, y-z are all even ....... A
A212892 ... w-x, x-y, y-z are all odd ........ A
A212893 ... w-x, x-y, y-z have same parity ... A
A005915 ... min{|w-x|, |x-y|, |y-z|} = 0
A212894 ... min{|w-x|, |x-y|, |y-z|} = 1
A212895 ... min{|w-x|, |x-y|, |y-z|} = 2
A179824 ... min{|w-x|, |x-y|, |y-z|} > 0
A212896 ... min{|w-x|, |x-y|, |y-z|} <= 1
A212897 ... min{|w-x|, |x-y|, |y-z|} > 1
A212898 ... min{|w-x|, |x-y|, |y-z|} <= 2
A212899 ... min{|w-x|, |x-y|, |y-z|} > 2
A212901 ... |w-x| = |x-y| = |y-z|
A212900 ... |w-x|, |x-y|, |y-z| are distinct . G
A212902 ... |w-x| < |x-y| < |y-z| ............ G
A212903 ... |w-x| <= |x-y| <= |y-z| .......... G
A212904 ... |w-x| + |x-y| + |y-z| = n ........ H
A212905 ... |w-x| + |x-y| + |y-z| = 2n ....... H
...
Note A: A212503-A212506 (and others) have these recurrence coefficients: 2,2,-6,0,6,-2,-2,1.
B: 3,-1,-5,5,1,-3,1
C: 0,2,2,-1,-4,0,2,0,-2,0,4,1,-2,-2,0,1
D: 4,-5,0,5,-4,1
E: 1,3,-3,-3,3,1,-1
F: 1,4,-4,-6,6,4,-4,-1,1
G: 2,1,-3,-1,1,3,-1,-2,1
H: 2,1,-4,1,2,-1

Examples

			a(2)=11 counts these (w,x,y,z): (1,1,1,1), (1,1,1,2), (1,1,2,1), (2,1,2,1), (2,1,1,2), (1,2,2,1), (1,2,1,2), (1,1,2,2), (1,2,2,2), (2,1,2,2), (2,2,2,2).
		

References

  • A. Barvinok, Lattice Points and Lattice Polytopes, Chapter 7 in Handbook of Discrete and Computational Geometry, CRC Press, 1997, 133-152.
  • P. Gritzmann and J. M. Wills, Lattice Points, Chapter 3.2 in Handbook of Convex Geometry, vol. B, North-Holland, 1993, 765-797.

Crossrefs

Programs

  • Mathematica
    t = Compile[{{n, _Integer}}, Module[{s = 0},
        (Do[If[w*x < 2 y*z, s = s + 1], {w, 1, #},
          {x, 1, #}, {y, 1, #}, {z, 1, #}] &[n]; s)]];
    Map[t[#] &, Range[0, 40]] (* A211795 *)
    (* Peter J. C. Moses, Apr 13 2012 *)

Formula

a(n) = n^4 - A211809(n).

A005891 Centered pentagonal numbers: (5n^2+5n+2)/2; crystal ball sequence for 3.3.3.4.4. planar net.

Original entry on oeis.org

1, 6, 16, 31, 51, 76, 106, 141, 181, 226, 276, 331, 391, 456, 526, 601, 681, 766, 856, 951, 1051, 1156, 1266, 1381, 1501, 1626, 1756, 1891, 2031, 2176, 2326, 2481, 2641, 2806, 2976, 3151, 3331, 3516, 3706, 3901, 4101, 4306, 4516, 4731, 4951, 5176, 5406
Offset: 0

Keywords

Comments

Equals the triangular numbers convolved with [1, 3, 1, 0, 0, 0, ...]. - Gary W. Adamson and Alexander R. Povolotsky, May 29 2009
From Ant King, Jun 15 2012: (Start)
a(n) == 1 (mod 5) for all n.
The digital roots of the a(n) form a purely periodic palindromic 9-cycle 1, 6, 7, 4, 6, 4, 7, 6, 1.
The units' digits of the a(n) form a purely periodic palindromic 4-cycle 1, 6, 6, 1.
(End)
Binomial transform of (1, 5, 5, 0, 0, 0, ...) and second partial sum of (1, 4, 5, 5, 5, ...). - Gary W. Adamson, Sep 09 2015
a(n) = a(-1-n) for all n in Z. - Michael Somos, Jan 25 2019
On the plane start with a single regular pentagon, and repeat the following procedure, "For each edge of any pentagon not already connected to an existing pentagon create a mirror image such that the mirror image does not overlap with an existing pentagon." a(n) is the number of pentagons occupying the plane after n repetitions. - Torlach Rush, Sep 14 2022

Examples

			a(2)= 5*T(2) + 1 = 5*3 + 1 = 16, a(4) = 5*T(4) + 1 = 5*10 + 1 = 51. - _Thomas M. Green_, Nov 16 2009
		

References

  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
  • B. K. Teo and N. J. A. Sloane, Magic numbers in polygonal and polyhedral clusters, Inorgan. Chem. 24 (1985), 4545-4558.

Crossrefs

Cf. A028895, A001844, A003215, A004068 (partial sums), A006322, A001263.
Partial sums of A008706.
Equals second row of A167546 divided by 2.

Programs

Formula

G.f.: (1 + 3*x + x^2)/(1 - x)^3. Simon Plouffe in his 1992 dissertation
Narayana transform (A001263) of [1, 5, 0, 0, 0, ...]. - Gary W. Adamson, Dec 29 2007
a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3), a(0)=1, a(1)=6, a(2)=16. - Jaume Oliver Lafont, Dec 02 2008
a(n) = 5*A000217(n) + 1 = 5*T(n) + 1, for n = 0, 1, 2, 3, ... and where T(n) = n*(n+1)/2 = n-th triangular number. - Thomas M. Green, Nov 25 2009
a(n) = a(n-1) + 5*n, with a(0)=1. - Vincenzo Librandi, Nov 18 2010
a(n) = A028895(n) + 1. - Omar E. Pol, Oct 03 2011
a(n) = 2*a(n-1) - a(n-2) + 5. - Ant King, Jun 12 2012
Sum_{n>=0} 1/a(n) = 2*Pi /sqrt(15) *tanh(Pi/2*sqrt(3/5)) = 1.360613169863... - Ant King, Jun 15 2012
a(n) = A101321(5,n). - R. J. Mathar, Jul 28 2016
E.g.f.: (2 + 10*x + 5*x^2)*exp(x)/2. - Ilya Gutkovskiy, Jul 28 2016
From Amiram Eldar, Jun 20 2020: (Start)
Sum_{n>=0} a(n)/n! = 17*e/2.
Sum_{n>=0} (-1)^(n+1)*a(n)/n! = 3/(2*e). (End)

Extensions

Formula corrected and relocated by Johannes W. Meijer, Nov 07 2009

A004068 Number of atoms in a decahedron with n shells.

Original entry on oeis.org

0, 1, 7, 23, 54, 105, 181, 287, 428, 609, 835, 1111, 1442, 1833, 2289, 2815, 3416, 4097, 4863, 5719, 6670, 7721, 8877, 10143, 11524, 13025, 14651, 16407, 18298, 20329, 22505, 24831, 27312, 29953, 32759, 35735, 38886, 42217, 45733, 49439
Offset: 0

Author

Albert D. Rich (Albert_Rich(AT)msn.com)

Keywords

Comments

Also as a(n)=(n/6)*(5*n^2+1), n>0: structured pentagonal diamond numbers (vertex structure 6) (cf. A081436 = alternate vertex; A000447 = structured diamonds; A100145 for more on structured numbers). - James A. Record (james.record(AT)gmail.com), Nov 07 2004
Number of atoms in decahedron with n shells, number = 5/6*(n^3) + 1/6*(n) (T. P. Martin, Shells of atoms, eq.(3)). - Brigitte Stepanov, Jul 02 2011
a(n+1) is the number of triples (w,x,y) having all terms in {0,...,n} and x+y >= w. - Clark Kimberling, Jun 14 2012
a(n) = Sum_{k=1..n} A215630(n,k) for n > 0. - Reinhard Zumkeller, Nov 11 2012
a(n) - a(n-2) = A010001(n-1), for n>1. - K. G. Stier, Dec 21 2012
a(n) is also a figurate number representing a cube of side n with a vertex cut off by a tetrahedron of side n-1. As such, a(n) = A000578(n) - A000292(n-1), n > 0. - Jean M. Morales, Aug 11 2013
The sequence starting with 1 is the third partial sum of (1, 4, 5, 5, 5, ...) and the binomial transform of (1, 6, 10, 5, 0, 0, 0, ...). - Gary W. Adamson, Sep 27 2015

Crossrefs

(1/12)*t*(n^3-n)+n for t = 2, 4, 6, ... gives A004006, A006527, A006003, A005900, A004068, A000578, A004126, A000447, A004188, A004466, A004467, A007588, A062025, A063521, A063522, A063523.

Programs

Formula

a(n) = 5*binomial(n + 1, 3) + binomial(n, 1).
a(n) = 5*n^3/6 + n/6.
a(n) = Sum_{i=0..n-1} A005891(i). - Xavier Acloque, Oct 08 2003
G.f.: x*(1+3*x+x^2) / (1-x)^4. - R. J. Mathar, Jun 05 2011
E.g.f.: (x/6)*(5x^2 + 15x + 6)*exp(x). - G. C. Greubel, Sep 27 2015
Sum_{n>0} 1/a(n) = 3*(2*gamma + polygamma(0, 1-i/sqrt(5)) + polygamma(0, 1+i/sqrt(5))) = 1.233988011257952852492845364799197179252... where i denotes the imaginary unit. - Stefano Spezia, Aug 31 2023

Extensions

Typo in definition corrected by Jean M. Morales, Aug 11 2013

A006542 a(n) = binomial(n,3)*binomial(n-1,3)/4.

Original entry on oeis.org

1, 10, 50, 175, 490, 1176, 2520, 4950, 9075, 15730, 26026, 41405, 63700, 95200, 138720, 197676, 276165, 379050, 512050, 681835, 896126, 1163800, 1495000, 1901250, 2395575, 2992626, 3708810, 4562425, 5573800, 6765440, 8162176, 9791320, 11682825, 13869450
Offset: 4

Keywords

Comments

Number of permutations of n+4 that avoid the pattern 132 and have exactly 3 descents. - Mike Zabrocki, Aug 26 2004
Kekulé numbers for certain benzenoids. - Emeric Deutsch, Jun 20 2005
a(n) = number of Dyck n-paths with exactly 4 peaks. - David Callan, Jul 03 2006
Six-dimensional figurate numbers for a hyperpyramid with pentagonal base. This corresponds to the sum(sum(sum(sum(1+sum(5*n))))) interpretation, see the Munafo webpage. - Robert Munafo, Jun 18 2009

References

  • S. J. Cyvin and I. Gutman, Kekulé structures in benzenoid hydrocarbons, Lecture Notes in Chemistry, No. 46, Springer, New York, 1988 (p. 166, no. 1).
  • S. Mukai, An Introduction to Invariants and Moduli, Cambridge, 2003; see p. 238.
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

The expression binomial(m+n-1,n)^2-binomial(m+n,n+1)*binomial(m+n-2,n-1) for the values m = 2 through 14 produces the sequences A000012, A000217, A002415, A006542, A006857, A108679, A134288, A134289, A134290, A134291, A140925, A140935, A169937.
Fourth column of the table of Narayana numbers A001263.
Apart from a scale factor, a column of A124428.

Programs

  • GAP
    List([4..40], n-> n*(n-1)^2*(n-2)^2*(n-3)/144); # G. C. Greubel, Feb 24 2019
  • Magma
    [ n*((n-1)*(n-2))^2*(n-3)/144 : n in [4..40] ]; // Wesley Ivan Hurt, Jun 17 2014
    
  • Maple
    A006542:=-(1+3*z+z**2)/(z-1)**7; # conjectured by Simon Plouffe in his 1992 dissertation
    A006542:=n->n*((n-1)*(n-2))^2*(n-3)/144; seq(A006542(n), n=4..40); # Wesley Ivan Hurt, Jun 17 2014
  • Mathematica
    Table[Binomial[n, 3]*Binomial[n-1, 3]/4, {n, 4, 40}]
  • PARI
    a(n)=n*((n-1)*(n-2))^2*(n-3)/144
    
  • Sage
    [n*(n-1)^2*(n-2)^2*(n-3)/144 for n in (4..40)] # G. C. Greubel, Feb 24 2019
    

Formula

a(n) = C(n, 3)*C(n-1, 3)/4 = n*(n-1)^2*(n-2)^2*(n-3)/144.
a(n) = A000292(n-3)*A000292(n-2)/4.
E.g.f.: x^4*(6 + 6*x + x^2)*exp(x)/144. - Vladeta Jovovic, Jan 29 2003
a(n) = Sum(Sum(Sum(Sum(1 + Sum(5*n))))) = Sum (A006414). - Xavier Acloque, Oct 08 2003
a(n) = C(n, 6) + 3*C(n+1, 6) + C(n+2, 6). - Mike Zabrocki, Aug 26 2004
G.f.: x^4*(1 + 3*x + x^2)/(1-x)^7. - Emeric Deutsch, Jun 20 2005
a(n) = C(n-2, n-4)*C(n-1, n-3)*C(n, n-2)/18. - Zerinvary Lajos, Jul 29 2005
a(n) = C(n,4)*C(n,3)/n. - Mitch Harris, Jul 06 2006
a(n+2) = (1/4)*Sum_{1 <= x_1, x_2 <= n} x_1*x_2*(det V(x_1,x_2))^2 = (1/4)*Sum_{1 <= i,j <= n} i*j*(i-j)^2, where V(x_1,x_2) is the Vandermonde matrix of order 2. - Peter Bala, Sep 21 2007
a(n) = C(n-1,3)^2 - C(n-1,2)*C(n-1,4). - Gary Detlefs, Dec 05 2011
a(n) = A000292(A000217(n-1)) - A000217(A000292(n-1)). - Ivan N. Ianakiev, Jun 17 2014
a(n) = Product_{i=1..3} A002378(n-4+i)/A002378(i). - Bruno Berselli, Nov 12 2014 (Rewritten, Sep 01 2016.)
Sum_{n>=4} 1/a(n) = 238 - 24*Pi^2. - Jaume Oliver Lafont, Jul 10 2017
Sum_{n>=4} (-1)^n/a(n) = 134 - 192*log(2). - Amiram Eldar, Oct 19 2020
a(n) = A000332(n) + 5*A000579(n+1). - Yasser Arath Chavez Reyes, Aug 18 2024

Extensions

Zabroki and Lajos formulas offset corrected by Gary Detlefs, Dec 05 2011

A022521 a(n) = (n+1)^5 - n^5.

Original entry on oeis.org

1, 31, 211, 781, 2101, 4651, 9031, 15961, 26281, 40951, 61051, 87781, 122461, 166531, 221551, 289201, 371281, 469711, 586531, 723901, 884101, 1069531, 1282711, 1526281, 1803001, 2115751, 2467531
Offset: 0

Keywords

Comments

Last digit of a(n) is always 1. Last two digits of a(n) (i.e., a(n) mod 100) are repeated periodically with palindromic part of period 20 {1,31,11,81,1,51,31,61,81,51,51,81,61,31,51,1,81,11,31,1}. Last three digits of a(n) (i.e., a(n) mod 1000) are repeated periodically with palindromic part of period 200. - Alexander Adamchuk, Aug 11 2006
In Conway and Guy, these numbers are called nexus numbers of order 5. - M. F. Hasler, Jan 27 2013
Numbers that can be arranged in a triangular-antitegmatic icosachoron (the 4D version of "rhombic dodecahedal numbers" (A005917)). - Steven Lu, Mar 28 2023

References

  • John H. Conway and Richard K. Guy, The Book of Numbers, Copernicus Press, NY, 1996, p. 54.

Crossrefs

First differences of A000584.
Column k=4 of array A047969.

Programs

Formula

a(n) = A003215(n) + 24 * A006322(n). - Xavier Acloque, Oct 11 2003
G.f.: (-1-x^4-26*x^3-66*x^2-26*x)/(x-1)^5. - Maksym Voznyy (voznyy(AT)mail.ru), Aug 11 2009
G.f.: polylog(-5, x)*(1-x)/x. See the g.f. of the rows of A008292 by Vladeta Jovovic, Sep 02 2002. - Wolfdieter Lang, May 10 2021
Sum_{n>=0} 1/a(n) = c1*tanh(c2/2) - c2*tanh(c1/2), where c1 = tan(3*Pi/10)*Pi and c2 = tan(Pi/10)*Pi. - Amiram Eldar, Jan 27 2022

A050446 Table read by ascending antidiagonals: T(n, m) giving total degree of n-th-order elementary symmetric polynomials in m variables.

Original entry on oeis.org

1, 1, 1, 1, 2, 1, 1, 3, 3, 1, 1, 5, 6, 4, 1, 1, 8, 14, 10, 5, 1, 1, 13, 31, 30, 15, 6, 1, 1, 21, 70, 85, 55, 21, 7, 1, 1, 34, 157, 246, 190, 91, 28, 8, 1, 1, 55, 353, 707, 671, 371, 140, 36, 9, 1, 1, 89, 793, 2037, 2353, 1547, 658, 204, 45, 10, 1, 1, 144, 1782, 5864, 8272, 6405, 3164, 1086, 285, 55, 11, 1
Offset: 0

Author

N. J. A. Sloane, Dec 23 1999

Keywords

Comments

T(n, m) is a polynomial of degree n in m. For example, T(2, m) = (m + 1)(m + 2)/2. For the polynomials corresponding to n = 1, 2, ..., 10, see the Cyvin-Gutman reference (p. 143). Kekulé numbers for certain benzenoids. - Emeric Deutsch, Jun 12 2005
Let LOOP X C_k, k >= 1, be the graph constructed by attaching a loop to each vertex of the cycle graph C_k. Let G_n, n >= 0, be the graph obtained by deleting one edge from LOOP X C_{n+1} while retaining the n + 1 loops; e.g., for n = 4, see the graph G_4 at the top of the page in the Stanley link below. Then T(n, m) equals the number of magic labelings of G_n having magic sum m. (See the second Mathematica program below which requires the "Omega" package authored by Axel Riese and which can be downloaded from the link provided in the article by Andrews et al.) - L. Edson Jeffery, Oct 19 2017
For n != 1, T(n, m) is the number of up-down words of length n over an alphabet of size m. - Sela Fried, Apr 08 2025
Conjecture: T(n,m) is the number of words of length n over the alphabet [m] such that any pair of adjacent letters sum to at most m + 1. - John Tyler Rascoe, Jun 06 2025

Examples

			Array begins:
  [0]  1  1    1     1      1      1       1       1        1        1
  [1]  1  2    3     4      5      6       7       8        9       10
  [2]  1  3    6    10     15     21      28      36       45       55
  [3]  1  5   14    30     55     91     140     204      285      385
  [4]  1  8   31    85    190    371     658    1086     1695     2530
  [5]  1 13   70   246    671   1547    3164    5916    10317    17017
  [6]  1 21  157   707   2353   6405   15106   31998    62349   113641
  [7]  1 34  353  2037   8272  26585   72302  173502   377739   760804
  [8]  1 55  793  5864  29056 110254  345775  940005  2286648  5089282
  [9]  1 89 1782 16886 102091 457379 1654092 5094220 13846117 34053437
  ...
Triangle starts:
  [0] 1;
  [1] 1,  1;
  [2] 1,  2,  1;
  [3] 1,  3,  3,  1;
  [4] 1,  5,  6,  4,  1;
  [5] 1,  8, 14, 10,  5, 1;
  [6] 1, 13, 31, 30, 15, 6, 1;
		

References

  • J. Berman and P. Koehler, Cardinalities of finite distributive lattices, Mitteilungen aus dem Mathematischen Seminar Giessen, 121 (1976), 103-124.
  • S. J. Cyvin and I. Gutman, Kekulé structures in benzenoid hydrocarbons, Lecture Notes in Chemistry, No. 46, Springer, New York, 1988 (pp. 142-144).

Crossrefs

Columns give A000012, A000045, A000045, A006356, A006357, A006358, ...
Cf. A050447.

Programs

  • Maple
    A050446 := proc(n,m)
        option remember;
        if m=0 then
            1;
        else
            procname(n,m-1)+add( procname(2*k,m-1) *procname(n-1-2*k,m), k=0..floor((n-1)/2) );
        end if;
    end proc:
    for d from 0 to 12 do
        for m from 0 to d do
            printf("%d,",A050446(d-m,m)) ;
        end do:
    end do: # R. J. Mathar, Dec 14 2011
    A050446 := := (n, m) -> evalf(abs(add(tan(2*j*Pi/(2*m + 1))^2*sec(2*j*Pi/(2*m + 1))^(n - 1), j = 1 .. m))/(2^(n - 1)*(2*m + 1))): # Sela Fried, Apr 28 2025
  • Mathematica
    t[n_, m_?Positive] := t[n, m] = t[n, m-1] + Sum[t[2k, m-1]*t[n-1 - 2k, m], {k, 0, (n-1)/2}]; t[n_, 0] = 1; Flatten[Table[t[i-k , k-1], {i, 1, 12}, {k, 1, i}]] (* Jean-François Alcover, Jul 25 2011, after formula *)
    << Omega.m; nmax = 9; Do[cond[n_] = {}; If[n == 0, cond[n] = {a[1] == a[2]}, AppendTo[cond[n], {a[1] + a[2] == a[2 n + 2], a[2 n] + a[2 n + 1] == a[2 n + 2]}]; If[n > 1, Do[AppendTo[cond[n], a[2 j] + a[2 j + 1] + a[2 j + 2] == a[2 n + 2]], {j, n - 1}]]]; cond[n] = Flatten[cond[n]]; f[n_] = OEqSum[Product[x[i]^a[i], {i, 2 n + 2}], cond[n], u][[1]] /. x[2 n + 2] -> y /. x[] -> 1; Do[f[n] = OEqR[f[n], Subscript[u, j]], {j, Length[cond[n]]}], {n, 0, nmax}]; Grid[Table[CoefficientList[Series[f[n], {y, 0, nmax}], y], {n, 0, nmax}]] (* _L. Edson Jeffery, Oct 19 2017 *)
  • Python
    from functools import cache
    @cache
    def T(n, k):
        return T(n, k - 1) + sum(T(2 * j, k - 1) * T(n - 1 - 2 * j, k)
            for j in range(1 + (n - 1) // 2)) if k > 0 else 1
    for n in range(6): print([T(n - k, k) for k in range(n + 1)])
    # Peter Luschny, Jun 08 2024

Formula

T(n, m) = T(n, m - 1) + Sum_{k=0..(n-1)/2} T(2*k, m - 1)*T(n - 1 - 2*k, m).
From Sela Fried, Apr 08 2025: (Start)
T(n, m) = 1/(2^(n-1)*(2*m+1))*|Sum_{j = 1..m} tan^2(2*j*Pi/(2*m+1))*sec^(n+1)(2*j*Pi/(2*m+1)))|.
G.f. for words of odd length over an alphabet of size m: x*U_{m-1}(1-x^2/2)/V_{m-1}(1-x^2/2),
g.f. for words of even length over an alphabet of size m: 1/V_{m-1}(1-x^2/2),
where U_k(x) and V_k(x) are the Chebyshev polynomials of the second and third kind, respectively. (End)

Extensions

More terms from Naohiro Nomoto, Jul 03 2001

A050447 Table T(n,m) giving total degree of n-th-order elementary symmetric polynomials in m variables, -1 <= n, 1 <= m, transposed and read by upward antidiagonals.

Original entry on oeis.org

1, 1, 1, 1, 2, 1, 1, 3, 3, 1, 1, 4, 6, 5, 1, 1, 5, 10, 14, 8, 1, 1, 6, 15, 30, 31, 13, 1, 1, 7, 21, 55, 85, 70, 21, 1, 1, 8, 28, 91, 190, 246, 157, 34, 1, 1, 9, 36, 140, 371, 671, 707, 353, 55, 1, 1, 10, 45, 204, 658, 1547, 2353, 2037, 793, 89, 1, 1, 11, 55, 285, 1086, 3164, 6405, 8272, 5864, 1782, 144, 1
Offset: 0

Author

N. J. A. Sloane, Dec 23 1999

Keywords

Examples

			Table begins
.    1   1   1    1     1      1       1       1        1         1
.    1   2   3    5     8     13      21      34       55        89
.    1   3   6   14    31     70     157     353      793      1782
.    1   4  10   30    85    246     707    2037     5864     16886
.    1   5  15   55   190    671    2353    8272    29056    102091
.    1   6  21   91   371   1547    6405   26585   110254    457379
.    1   7  28  140   658   3164   15106   72302   345775   1654092
.    1   8  36  204  1086   5916   31998  173502   940005   5094220
.    1   9  45  285  1695  10317   62349  377739  2286648  13846117
.    1  10  55  385  2530  17017  113641  760804  5089282  34053437
		

References

  • J. Berman and P. Koehler, Cardinalities of finite distributive lattices, Mitteilungen aus dem Mathematischen Seminar Giessen, 121 (1976), 103-124.
  • S. J. Cyvin and I. Gutman, Kekulé structures in benzenoid hydrocarbons, Lecture Notes in Chemistry, No. 46, Springer, New York, 1988 (see p. 120).
  • Manfred Goebel, Rewriting Techniques and Degree Bounds for Higher Order Symmetric Polynomials, Applicable Algebra in Engineering, Communication and Computing (AAECC), Volume 9, Issue 6 (1999), 559-573.

Crossrefs

Columns give A000012, A000027, A000217, A000330, A006322, ...

Programs

  • Mathematica
    nmax = 12; t[n_, m_?Positive] := t[n, m] = t[n, m-1] + Sum[t[2k, m-1]*t[n-1-2k, m], {k, 0, (n-1)/2}]; t[n_, 0]=1; Flatten[ Table[ t[k-1, n-k], {n, 1, nmax}, {k, 1, n}]] (* Jean-François Alcover, Nov 14 2011 *)
    nmax = 10; f[0, x_] := 1; f[1, x_] := 1/(1 - x); f[n_, x_] := (x + f[n - 2, x])/(1 - x^2 - x*f[n - 2, x]); t[n_, m_] := Coefficient[Series[f[n, x], {x, 0, m}], x, m]; Grid[Table[t[n, m], {n, nmax}, {m, 0, nmax - 1}]] (* L. Edson Jeffery, Oct 19 2017 *)
  • PARI
    M(n)=matrix(n,n,i,j,if(sign(i+j-n)-1,0,1)); V(n)=vector(n,i,1); P(r,n)=vecmax(V(r)*M(r)^n) \\ P(r,n) is T(n,k); Benoit Cloitre, Jan 27 2003

Formula

See PARI code. See A050446 for recurrence.
G.f. for row n >= 0: f(n, x) = (x + f(n-2, x))/(1 - x^2 - x*f(n-2, x)), where f(0, x) = 1 and f(1, x) = 1/(1 - x) [R. P. Stanley]. - L. Edson Jeffery, Oct 19 2017

Extensions

More terms from Naohiro Nomoto, Jul 03 2001

A006414 Number of nonseparable toroidal tree-rooted maps with n + 2 edges and n + 1 vertices.

Original entry on oeis.org

1, 9, 40, 125, 315, 686, 1344, 2430, 4125, 6655, 10296, 15379, 22295, 31500, 43520, 58956, 78489, 102885, 133000, 169785, 214291, 267674, 331200, 406250, 494325, 597051, 716184, 853615, 1011375, 1191640, 1396736, 1629144, 1891505, 2186625, 2517480, 2887221
Offset: 0

Keywords

Comments

The number of faces is 1.
a(n) = K(Oa(2,3,n)), Kekulé numbers of certain benzenoid structures (see the Cyvin - Gutman reference).
Sequence of partial sums of A006322. - L. Edson Jeffery, Dec 13 2011
The sequence b(n) = a(n-2) with a(-1) = 0, for n >= 1, is b(n) = n^3*(n^2 - 1)/4!. It is obtained by comparing the result for the powers n^5 from Worpitzky's identity (see a formula in A000584) with the result obtained from the counting of degrees of freedom for the decomposition of a rank 5 tensor in n dimensions via the standard Young tableaux version with 5 boxes corresponding to the seven partitions of 5. The difference of the two versions gives: 10*(binomial(n+3, 5) + 3*binomial(n+2, 5) + binomial(n+1, 5)) = 5*n*(binomial(n+2, 4) + binomial(n+1, 4)) = 10*b(n). See the formula for a(n) below. - Wolfdieter Lang, Jul 18 2019

References

  • S. J. Cyvin and I. Gutman, Kekulé structures in benzenoid hydrocarbons, Lecture Notes in Chemistry, No. 46, Springer, New York, 1988, p. 105, eq. (ii), and p. 186.
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Differences of A006542 (C(n, 3)*C(n-1, 3)/4).

Programs

Formula

a(n) = (n+1)*(n+2)^3*(n+3)/24. - N. J. A. Sloane, Apr 02 2004
a(n) = (n+2)^3*((n+2)^2 - 1)/24. - Paul Richards, Mar 04 2007
G.f.: (1 + 3*x + x^2)/(1-x)^6. - Colin Barker, Feb 21 2012
a(n) = (Sum_{k=0..n+1} k*(n+1)*((n+1)^2 - k^2))/6 for n > 0, which is the sum of all areas of Pythagorean triangles with arms 2*k*(n+1) and (n+1)^2 - k^2 with hypotenuse k^2 + (n+1)^2. - J. M. Bergot, May 12 2014
a(n) = A143945(n+2)/8. - J. M. Bergot, Jun 14 2014
Sum_{n>=0} 1/a(n) = 30 - 24*zeta(3). - Jaume Oliver Lafont, Jul 09 2017
a(n) = binomial(n+5, 5) + 3*binomial(n+4, 5) + binomial(n+3, 5) = ((n+2)/2)*(binomial(n+4, 4) + binomial(n+3, 4)), for n >= 0. See a comment above on the sequence b(n) = a(n-2) = n^3*(n^2 - 1)/4!. - Wolfdieter Lang, Jul 19 2019
E.g.f.: (24 + 192*x + 276*x^2 + 124*x^3 + 20*x^4 + x^5)*exp(x)/4!. - G. C. Greubel, Sep 02 2019
Sum_{n>=0} (-1)^n/a(n) = 18*zeta(3) + 48*log(2) - 54. - Amiram Eldar, Jan 09 2022

Extensions

More terms from Robert Newstedt (Patternfinder(AT)webtv.net)
Name clarified by Andrew Howroyd, Apr 05 2021

A079547 a(n) = ((n^6 - (n-1)^6) - (n^2 - (n-1)^2))/60.

Original entry on oeis.org

0, 1, 11, 56, 192, 517, 1183, 2408, 4488, 7809, 12859, 20240, 30680, 45045, 64351, 89776, 122672, 164577, 217227, 282568, 362768, 460229, 577599, 717784, 883960, 1079585, 1308411
Offset: 1

Author

Xavier Acloque, Jan 22 2003

Keywords

Comments

Polynexus numbers of order 6.
A polynexus (subtractive) function is composed of two or more subtracted nexus numbers divided by an integer x. The general form of the formula is a(n)=((n^p-(n-1)^p)-(n^q-(n-1)^q))/x, where n, p, q and x are integers.
Already known: ((n^5-(n-1)^5) - (n^3-(n-1)^3))/24, giving A006322 for n>1; ((n^4-(n-1)^4) - (n^2-(n-1)^2))/12, giving A000330; ((n^3-(n-1)^3) - (n^1-(n-1)^1))/6, giving A000217; ((n^2-(n-1)^2) - (n^1-(n-1)^1))/2, giving n; ((n^2-(n-1)^2) - (n^0-(n-1)^0))/1, giving 2*n-1. In those examples, x is equal to 1,2,6,12,24, and 3 is also possible.
Also number of monotone n-weightings of complete bipartite digraph K(3,2) if offset were 0; cf. A085464-A085465. - Goran Kilibarda, Vladeta Jovovic, Jul 01 2003
Partial sums of A037270. - J. M. Bergot, Jun 07 2012

Programs

  • GAP
    List([1..30], n-> n*(6*n^4-15*n^3+20*n^2-15*n+4)/60) # G. C. Greubel, Jun 19 2019
  • Magma
    [n*(6*n^4-15*n^3+20*n^2-15*n+4)/60: n in [1..30]]; // G. C. Greubel, Jun 19 2019
    
  • Mathematica
    Table[((n^6 -(n-1)^6) - (n^2 -(n-1)^2))/60, {n, 30}] (* Bruno Berselli, Feb 13 2012 *)
    LinearRecurrence[{6,-15,20,-15,6,-1},{0,1,11,56,192,517},30] (* Harvey P. Dale, Feb 21 2023 *)
  • PARI
    a(n) = n*(6*n^4-15*n^3+20*n^2-15*n+4)/60 \\ Charles R Greathouse IV, Jan 16 2013
    
  • Sage
    [n*(6*n^4-15*n^3+20*n^2-15*n+4)/60 for n in (1..30)] # G. C. Greubel, Jun 19 2019
    

Formula

a(n+1) = Sum_{i=1..n} (i^2 + i^4)/2 = n*(2*n+1)*(n+1)*(3*n^2+3*n+4)/60. - Vladeta Jovovic, Mar 17 2006
G.f.: x^2*(x+1)*(1+4*x+x^2)/(1-x)^6. - Bruno Berselli, Feb 13 2012
a(n) = Sum_{i=1..n-1} Sum_{j=1..n-1} min(i,j)^3. - Enrique Pérez Herrero, Jan 16 2013
E.g.f.: x^2*(30 + 80*x + 45*x^2 + 6*x^3)*exp(x)/60. - G. C. Greubel, Jun 19 2019
Showing 1-10 of 22 results. Next