Original entry on oeis.org
1, 6, 21, 71, 216, 672, 1982, 5817, 16582, 46633, 128704, 350665, 941715, 2499640, 6557378, 17024095, 43756166, 111433472, 281303882, 704320180, 1749727370, 4314842893, 10565857064, 25700414815, 62115621317, 149214574760, 356354881511, 846292135184
Offset: 1
- N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
- T. D. Noe, Table of n, a(n) for n = 1..500
- A. O. L. Atkin, P. Bratley, I. G. McDonald, and J. K. S. McKay, Some computations for m-dimensional partitions, Proc. Camb. Phil. Soc., 63 (1967), 1097-1100.
- A. O. L. Atkin, P. Bratley, I. G. McDonald, and J. K. S. McKay, Some computations for m-dimensional partitions, Proc. Camb. Phil. Soc., 63 (1967), 1097-1100. [Annotated scanned copy]
- Srivatsan Balakrishnan, Suresh Govindarajan, and Naveen S. Prabhakar, On the asymptotics of higher-dimensional partitions, arXiv:1105.6231 [cond-mat.stat-mech], 2011, p.21.
- N. J. A. Sloane, Transforms
-
with(numtheory): etr:= proc(p) local b; b:=proc(n) option remember; local d,j; if n=0 then 1 else add(add(d*p(d), d=divisors(j)) *b(n-j), j=1..n)/n fi end end: a:= etr(n-> binomial(n+3,4)): seq(a(n), n=1..30); # Alois P. Heinz, Sep 08 2008
-
nn = 50; b = Table[Binomial[n, 4], {n, 4, nn + 4}]; Rest[CoefficientList[Series[Product[1/(1 - x^m)^b[[m]], {m, nn}], {x, 0, nn}], x]] (* T. D. Noe, Jun 21 2012 *)
nmax=50; Rest[CoefficientList[Series[Product[1/(1-x^k)^(k*(k+1)*(k+2)*(k+3)/24),{k,1,nmax}],{x,0,nmax}],x]] (* Vaclav Kotesovec, Mar 11 2015 *)
-
a(n)=if(n<0, 0, polcoeff(exp(sum(k=1, n, x^k/(1-x^k)^5/k, x*O(x^n))), n)) /* Joerg Arndt, Apr 16 2010 */
A104392
Sums of 2 distinct positive pentatope numbers (A000332).
Original entry on oeis.org
6, 16, 20, 36, 40, 50, 71, 75, 85, 105, 127, 131, 141, 161, 196, 211, 215, 225, 245, 280, 331, 335, 336, 345, 365, 400, 456, 496, 500, 510, 530, 540, 565, 621, 705, 716, 720, 730, 750, 785, 825, 841, 925, 1002, 1006, 1016, 1036, 1045, 1071, 1127
Offset: 0
- Conway, J. H. and Guy, R. K. The Book of Numbers. New York: Springer-Verlag, pp. 55-57, 1996.
- Hyun Kwang Kim, On Regular Polytope Numbers, Proc. Amer. Math. Soc., 131 (2003), 65-75.
- J. V. Post, Table of Polytope Numbers, Sorted, Through 1,000,000.
- Eric Weisstein's World of Mathematics, Pentatope Number.
-
nn=15; Select[Union[Total/@Subsets[Binomial[Range[4,nn],4],{2}]], #Harvey P. Dale, Mar 13 2011 *)
A104393
Sums of 3 distinct positive pentatope numbers (A000332).
Original entry on oeis.org
21, 41, 51, 55, 76, 86, 90, 106, 110, 120, 132, 142, 146, 162, 166, 176, 197, 201, 211, 216, 226, 230, 231, 246, 250, 260, 281, 285, 295, 315, 336, 337, 341, 346, 350, 351, 366, 370, 371, 380, 401, 405, 406, 415, 435, 457, 461, 471, 491, 501
Offset: 0
- Conway, J. H. and Guy, R. K. The Book of Numbers. New York: Springer-Verlag, pp. 55-57, 1996.
- Hyun Kwang Kim, On Regular Polytope Numbers, Proc. Amer. Math. Soc., 131 (2003), 65-75.
- J. V. Post, Table of Polytope Numbers, Sorted, Through 1,000,000.
- Eric Weisstein's World of Mathematics, Pentatope Number.
-
Total/@Subsets[Table[Binomial[n+3,4],{n,10}],{3}]//Sort (* Harvey P. Dale, Feb 14 2018 *)
A145454
Exponential transform of binomial(n,4) = A000332.
Original entry on oeis.org
1, 0, 0, 0, 1, 5, 15, 35, 105, 756, 6510, 46530, 283470, 1667380, 11457446, 99776040, 969295145, 9298091180, 86154691680, 804769174536, 8052676029420, 88489327173660, 1038440150703340, 12501684521410700, 151866259113256611
Offset: 0
-
a:= proc(n) option remember; `if`(n=0, 1, add(
binomial(n-1, j-1) *binomial(j,4) *a(n-j), j=1..n))
end:
seq(a(n), n=0..30);
-
Table[Sum[BellY[n, k, Binomial[Range[n], 4]], {k, 0, n}], {n, 0, 25}] (* Vladimir Reshetnikov, Nov 09 2016 *)
A104394
Sums of 4 distinct positive pentatope numbers (A000332).
Original entry on oeis.org
56, 91, 111, 121, 125, 147, 167, 177, 181, 202, 212, 216, 231, 232, 236, 246, 251, 261, 265, 286, 296, 300, 316, 320, 330, 342, 351, 352, 356, 371, 372, 376, 381, 385, 386, 406, 407, 411, 416, 420, 421, 436, 440, 441, 450, 462, 472, 476, 492, 496
Offset: 1
- Conway, J. H. and Guy, R. K. The Book of Numbers. New York: Springer-Verlag, pp. 55-57, 1996.
- Hyun Kwang Kim, On Regular Polytope Numbers, Proc. Amer. Math. Soc., 131 (2003), 65-75.
- J. V. Post, Table of Polytope Numbers, Sorted, Through 1,000,000.
- Eric Weisstein's World of Mathematics, Pentatope Number.
A104395
Sums of 5 distinct positive pentatope numbers (A000332).
Original entry on oeis.org
126, 182, 217, 237, 247, 251, 266, 301, 321, 331, 335, 357, 377, 386, 387, 391, 412, 421, 422, 426, 441, 442, 446, 451, 455, 456, 477, 497, 507, 511, 532, 542, 546, 551, 561, 562, 566, 576, 581, 586, 591, 595, 606, 616, 620, 626, 630, 642, 646, 650
Offset: 1
- Conway, J. H. and Guy, R. K. The Book of Numbers. New York: Springer-Verlag, pp. 55-57, 1996.
-
N:= 1000: # for terms <= N
ptop:= n -> n*(n+1)*(n+2)*(n+3)/24:
P:= 1:
for i from 1 while ptop(i) < N do
P:= P * (1 + x*y^ptop(i))
od:
sort(map(degree,convert(convert(series(coeff(P,x,5),y,N+1),polynom),list)));
# Robert Israel, Nov 20 2023
A342865
Irregular table read by rows: T(n,k) is the number of permutations in S_n that have exactly k occurrences of the pattern 1234. 0 <= k <= A000332(n).
Original entry on oeis.org
1, 1, 2, 6, 23, 1, 103, 12, 4, 0, 0, 1, 513, 102, 63, 10, 6, 12, 8, 0, 0, 5, 0, 0, 0, 0, 0, 1, 2761, 770, 665, 196, 146, 116, 142, 46, 10, 72, 32, 24, 0, 13, 0, 12, 18, 0, 0, 10, 0, 0, 0, 0, 0, 6, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1
Offset: 0
Table begins:
n\k| 0 1 2 3 4 5 6
---+-------------------------------------------------------------------
0 | 1;
1 | 1;
2 | 2;
3 | 6;
4 | 23, 1;
5 | 103, 12, 4, 0, 0, 1;
6 | 513, 102, 63, 10, 6, 12, 8, ...
7 | 2761, 770, 665, 196, 146, 116, 142, ...
8 | 15767, 5545, 5982, 2477, 2148, 1204, 1782, ...
9 | 94359, 39220, 49748, 25886, 25190, 13188, 19936, ...
10 | 586590, 276144, 396642, 244233, 260505, 142550, 210663, ...
11 | 3763290, 1948212, 3089010, 2167834, 2493489, 1476655, 2136586, ...
Original entry on oeis.org
0, 0, 0, 0, 1, 2, -3, 5, 7, -9, 12, 15, -18, 22, 26, -30, 35, 40, -45, 51, 57, -63, 70, 77, -84, 92, 100, -108, 117, 126, -135, 145, 155, -165, 176, 187, -198, 210, 222, -234, 247, 260, -273, 287, 301, -315, 330, 345, -360, 376, 392, -408, 425, 442, -459, 477
Offset: 0
a(6) = -3 and A000332(6) = (-3)(-10)/2 = 15.
- G. C. Greubel, Table of n, a(n) for n = 0..1000
- Eric Weisstein's World of Mathematics, Pentagonal Number.
- Eric Weisstein's World of Mathematics, Pentatope Number.
- Index entries for linear recurrences with constant coefficients, signature (0,0,3,0,0,-3,0,0,1).
-
CoefficientList[Series[(-x^4*(x^4 + 2*x^3 - 3*x^2 + 2*x + 1))/((x - 1)^3*(1 + x^2 + x)^3), {x,0,50}], x] (* G. C. Greubel, Jun 13 2017 *)
LinearRecurrence[{0,0,3,0,0,-3,0,0,1},{0,0,0,0,1,2,-3,5,7},60] (* Harvey P. Dale, Feb 13 2023 *)
-
my(x='x+O('x^50)); concat([0, 0, 0, 0], Vec((-x^4*(x^4 +2*x^3 -3*x^2 +2*x +1))/((x-1)^3*(1+x^2+x)^3))) \\ G. C. Greubel, Jun 13 2017
A145920
List of numbers that are both pentagonal (A000326) and binomial coefficients C(n,4) (A000332).
Original entry on oeis.org
0, 1, 5, 35, 70, 210, 330, 715, 1001, 1820, 2380, 3876, 4845, 7315, 8855, 12650, 14950, 20475, 23751, 31465, 35960, 46376, 52360, 66045, 73815, 91390, 101270, 123410, 135751, 163185, 178365, 211876, 230300, 270725, 292825, 341055, 367290, 424270
Offset: 1
35, for example, is both A000326(5) and A000332(7).
Cf.
A141919, of which this is a subsequence.
A104396
Sums of 6 distinct positive pentatope numbers (A000332).
Original entry on oeis.org
252, 336, 392, 427, 447, 456, 457, 461, 512, 547, 567, 577, 581, 596, 621, 631, 651, 661, 665, 677, 687, 707, 712, 717, 721, 732, 742, 746, 752, 756, 761, 772, 776, 786, 796, 816, 826, 830, 841, 852, 872, 881, 882, 886, 897, 907, 916, 917, 921, 932
Offset: 1
- Conway, J. H. and Guy, R. K. The Book of Numbers. New York: Springer-Verlag, pp. 55-57, 1996.
- Hyun Kwang Kim, On Regular Polytope Numbers, Proc. Amer. Math. Soc., 131 (2003), 65-75.
- J. V. Post, Table of Polytope Numbers, Sorted, Through 1,000,000.
- Eric Weisstein's World of Mathematics, Pentatope Number.
Showing 1-10 of 396 results.
Comments