A266506 a(n) = 2*a(n-4) + a(n-8) for n >= 8.
2, -1, 2, 1, 1, 3, 3, 5, 4, 5, 8, 11, 9, 13, 19, 27, 22, 31, 46, 65, 53, 75, 111, 157, 128, 181, 268, 379, 309, 437, 647, 915, 746, 1055, 1562, 2209, 1801, 2547, 3771, 5333, 4348, 6149, 9104, 12875, 10497, 14845, 21979, 31083, 25342, 35839, 53062, 75041, 61181, 86523
Offset: 0
Links
- G. C. Greubel, Table of n, a(n) for n = 0..1000
- Index entries for linear recurrences with constant coefficients, signature (0,0,0,2,0,0,0,1).
Programs
-
Magma
m:=50; R
:=PowerSeriesRing(Integers(), m); Coefficients(R!((-3*x^7+x^6-5*x^5+3*x^4-x^3-2*x^2+x-2)/(x^8+2*x^4-1))); // G. C. Greubel, Jul 27 2018 -
Mathematica
CoefficientList[Series[(-3*x^7 + x^6 - 5*x^5 + 3*x^4 - x^3 - 2*x^2 + x - 2)/(x^8 + 2*x^4 - 1), {x, 0, 50}], x] (* G. C. Greubel, Jul 27 2018 *)
-
PARI
x='x+O('x^50); Vec((-3*x^7+x^6-5*x^5+3*x^4-x^3-2*x^2+x-2)/(x^8 + 2*x^4-1)) \\ G. C. Greubel, Jul 27 2018
Formula
From Chai Wah Wu, Sep 17 2016: (Start)
a(n) = 2*a(n-4) + a(n-8) for n > 7.
G.f.: (-3*x^7 + x^6 - 5*x^5 + 3*x^4 - x^3 - 2*x^2 + x - 2)/(x^8 + 2*x^4 - 1).
(End)
Extensions
Edited, new name using given formula, Joerg Arndt, Jan 31 2024
Comments