cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 23 results. Next

A373660 Triangle read by rows: T(n, k) = (-1)^k*binomial(n, k) * A050446(n, n - k).

Original entry on oeis.org

1, 2, -1, 6, -6, 1, 30, -42, 15, -1, 190, -340, 186, -32, 1, 1547, -3355, 2460, -700, 65, -1, 15106, -38430, 35295, -14140, 2355, -126, 1, 173502, -506114, 558285, -289520, 71295, -7413, 238, -1, 2286648, -7520040, 9681700, -6174224, 2033920, -328384, 22204, -440, 1
Offset: 0

Views

Author

Peter Luschny, Jun 12 2024

Keywords

Examples

			Triangle starts:
  [0]      1;
  [1]      2,      -1;
  [2]      6,      -6,      1;
  [3]     30,     -42,     15,      -1;
  [4]    190,    -340,    186,     -32,     1;
  [5]   1547,   -3355,   2460,    -700,    65,    -1;
  [6]  15106,  -38430,  35295,  -14140,  2355,  -126,   1;
  [7] 173502, -506114, 558285, -289520, 71295, -7413, 238, -1;
		

Crossrefs

Cf. A050446, A373659 (column 0), A000111 (row sums), A373658 (alternating row sums).

Programs

  • Maple
    T := (n, k) -> (-1)^k*binomial(n, k) * A050446(n, n - k):
    for n from 0 to 7 do print(seq(T(n, k), k=0..n)) od;

Formula

Row sums are the Euler numbers A000111.

A373658 a(n) = Sum_{k=0..n} binomial(n, k)*A050446(n, n - k). Alternating row sums of A373660.

Original entry on oeis.org

1, 3, 13, 88, 749, 8128, 105453, 1606368, 28047561, 552980736, 12149820237, 294451219712, 7803392603109, 224513730740224, 6969658947747357, 232210548740331008, 8265038127738534417, 312994090288528379904, 12565925964816171109069, 533124629548518534705152
Offset: 0

Views

Author

Peter Luschny, Jun 13 2024

Keywords

Crossrefs

Programs

  • Maple
    a := n -> local k; add(binomial(n, k) * A050446(n, n - k), k = 0..n):
    seq(a(n), n = 0..19);

A373659 a(n) = A050446(n, n) = A050447(n, n).

Original entry on oeis.org

1, 2, 6, 30, 190, 1547, 15106, 173502, 2286648, 34053437, 565424068, 10358963615, 207582616995, 4516836844067, 106059101583274, 2673073911292478, 71978776046880670, 2062324447652722085, 62647209605811093549, 2011144064488835839006, 68034719732835699646658
Offset: 0

Views

Author

Peter Luschny, Jun 12 2024

Keywords

Crossrefs

Programs

  • Python
    from functools import cache
    @cache
    def T(n, k):
        return T(n, k - 1) + sum(T(2 * j, k - 1) * T(n - 1 - 2 * j, k)
        for j in range(1 + (n - 1) // 2)) if k > 0 else 1
    def a(n): return T(n, n)
    print([a(n) for n in range(21)])

Formula

a(n) = A373660(n, 0).

A205495 Convolution related to array A205497 and to generating functions for the rows of the array form of A050446.

Original entry on oeis.org

1, 46, 937, 12331, 123216, 1019051, 7349140, 47816612, 287357460, 1622135139, 8709442871, 44899559053, 223883501478, 1086005140508, 5148332487873, 23940669359515, 109535136537197, 494307574790201, 2204762394907238, 9736270202183689, 42629974672006973
Offset: 0

Views

Author

L. Edson Jeffery, Jan 28 2012

Keywords

Comments

The denominator of the generating function for this sequence is a polynomial of degree 56. Terms corresponding to n=0,...,20 are shown above, with those for n=21,...,60 as follows: {185291835954412064, 800317930217099771, 3438057983187970745, 14700487950597800766, 62602970565114993286, 265668524077091893747, 1124012759249695584332, 4743119424920236606646, 19969635838069446154607, 83911303727287364502524, 351988383031210413076295, 1474320303050934448138586, 6167313972271997160616487, 25770018446823167711177256, 107575128852482376189099657, 448686576996876913475900985, 1870064613139417627428681546, 7789228056784680467763728356, 32425967246106296890368810943, 134922331498272588364476180150, 561170234171421424687450762218, 2333185213162875626980569334586, 9697691681023767935816546925810, 40296761019115897693378020750304, 167405678599573178754554735425500, 695315826495982432201817860350384, 2887471697263577884599209836720724, 11989119731801937435908186367502418, 49773672878387017240820277186133933, 206615368239595050328432096365772786, 857596063782668973911429246019645248, 3559311146445642266628947699835442405, 14771247245703845390492597474797181501, 61297218039066894581942073485999795498, 254355134654745436101804689307395799176, 1055406241452059982356995468881303135245, 4379061349078358899285795579448995148357, 18168834136106060681393826933553149199771, 75380646388163385087709907289615387511431, 312738422596514964765543905180978445030357}.

Crossrefs

Formula

G.f.: F(x) = (1 + 12*x - 112*x^2 - 343*x^3 + 3560*x^4 + 765*x^5 - 40847*x^6 + 10585*x^7 + 310877*x^8 - 193248*x^9 - 1419395*x^10 + 785781*x^11 + 5312667*x^12 - 2323912*x^13 - 15628824*x^14 + 5966469*x^15 + 33782788*x^16 - 10059915*x^17 - 55526776*x^18 + 8186536*x^19 + 73510769*x^20 + 2472617*x^21 - 80001340*x^22 - 15202136*x^23 + 70051834*x^24 + 21752017*x^25 - 47710282*x^26 - 20490103*x^27 + 24620158*x^28 + 14731526*x^29 - 9477868*x^30 - 8317984*x^31 + 2706852*x^32 + 3624852*x^33 - 575397*x^34 - 1176133*x^35 + 88180*x^36 + 269838*x^37 - 5571*x^38 - 39836*x^39 - 2463*x^40 + 2831*x^41 + 1104*x^42 + 107*x^43 - 221*x^44 - 36*x^45 + 23*x^46 + 2*x^47 - x^48) / ((1-x)^6 * (1-x-x^2)^5 * (1-2*x-x^2+x^3)^4 * (1-2*x-3*x^2+x^3+x^4)^3 * (1-3*x-3*x^2+4*x^3+x^4-x^5)^2 * (1-3*x-6*x^2+4*x^3+5*x^4-x^5-x^6)).
CONJECTURE 1. a(n) = M_{n,5} = M_{5,n}, where M = A205497.
CONJECTURE 2. Let w=2*cos(Pi/13). Then lim_{n->oo} a(n+1)/a(n) = w^5-4*w^3+3*w = spectral radius of the 6 X 6 unit-primitive matrix (see [Jeffery]) A_{13,5} = [0,0,0,0,0,1; 0,0,0,0,1,1; 0,0,0,1,1,1; 0,0,1,1,1,1; 0,1,1,1,1,1; 1,1,1,1,1,1].

A205496 Convolution related to array A205497 and to generating functions for the rows of the array form of A050446.

Original entry on oeis.org

1, 79, 2475, 47191, 656683, 7349140, 70148989, 593513485, 4571277561, 32672880245, 219830952888, 1407595988962, 8650512982826, 51368774778763, 296342413123845, 1668132449230997, 9195464663247238, 49787415018534288, 265430586786327769
Offset: 0

Views

Author

L. Edson Jeffery, Jan 30 2012

Keywords

Comments

See array A205497 regarding association of this sequence with generating functions for the rows of the array form of A050446.

Crossrefs

Formula

G.f.: F(x) = (1 + 29*x - 330*x^2 - 1870*x^3 + 28792*x^4 - 28880*x^5 - 658872*x^6 + 1808035*x^7 + 7251417*x^8 - 30049286*x^9 - 53844318*x^10 + 331611771*x^11 + 172019006*x^12 - 2314667923*x^13 - 44340353*x^14 + 12301024850*x^15 - 283356562*x^16 - 53520778564*x^17 + 21918429228*x^18 + 188280737400*x^19 - 99256863420*x^20 - 537933519143*x^21 + 304479953092*x^22 + 1292735746371*x^23 - 685767992532*x^24 - 2703731985407*x^25 + 1220124121648*x^26 + 4969059486596*x^27 - 1817137951816*x^28 - 7940770334300*x^29 + 2310666239334*x^30 + 10897173663437*x^31 - 242841325861*x^32 - 12794627581139*x^33 + 1919519246791*x^34 + 12918502357203*x^35 - 852890650171*x^36 -11317650709986*x^37 - 313858871781*x^38 + 8665013739391*x^39 + 1068808054156*x^40 - 5804674396693*x^41 - 1231795216164*x^42 + 3382179875958*x^43 + 984955686298*x^44 - 1694171598050*x^45 - 619939090864*x^46 + 718589694092*x^47 + 323730198889*x^48 - 253619875999*x^49 - 144187648137*x^50 + 72968474423*x^51 + 55421646471*x^52 - 16658211415*x^53 - 18346712946*x^54 + 2894246774*x^55 + 5160729532*x^56 - 351795527*x^57 - 1206372119*x^58 + 22006791*x^59 + 227332930*x^60 + 1758161*x^61 - 33060926*x^62 - 881244*x^63 + 3436739*x^64 + 218431*x^65 - 208580*x^66 - 43625*x^67 - 299*x^68 + 6491*x^69 + 1284*x^70 - 646*x^71 - 104*x^72 + 38*x^73 +3*x^74 -x^75) / ((1-x)^7 * (1-x-x^2)^6 * (1-2*x-x^2+x^3)^5 * (1-2*x-3*x^2+x^3+x^4)^4 * (1-3*x-3*x^2+4*x^3+x^4-x^5)^3 * (1-3*x-6*x^2+4*x^3+5*x^4-x^5-x^6)^2 * (1-4*x-6*x^2+10*x^3+5*x^4-6*x^5-x^6+x^7)).
CONJECTURE 1. a(n) = M_{n,6} = M_{6,n}, where M = A205497.
CONJECTURE 2. Let w=2*cos(Pi/15). Then lim_{n->oo} a(n+1)/a(n) = w^6-5*w^4+6*w^2-1 = spectral radius of the 7 X 7 unit-primitive matrix (see [Jeffery]) A_{15,6} = [0,0,0,0,0,0,1; 0,0,0,0,0,1,1; 0,0,0,0,1,1,1; 0,0,0,1,1,1,1; 0,0,1,1,1,1,1; 0,1,1,1,1,1,1; 1,1,1,1,1,1,1].

A000330 Square pyramidal numbers: a(n) = 0^2 + 1^2 + 2^2 + ... + n^2 = n*(n+1)*(2*n+1)/6.

Original entry on oeis.org

0, 1, 5, 14, 30, 55, 91, 140, 204, 285, 385, 506, 650, 819, 1015, 1240, 1496, 1785, 2109, 2470, 2870, 3311, 3795, 4324, 4900, 5525, 6201, 6930, 7714, 8555, 9455, 10416, 11440, 12529, 13685, 14910, 16206, 17575, 19019, 20540, 22140, 23821, 25585, 27434, 29370
Offset: 0

Views

Author

Keywords

Comments

The sequence contains exactly one square greater than 1, namely 4900 (according to Gardner). - Jud McCranie, Mar 19 2001, Mar 22 2007 [This is a result from Watson. - Charles R Greathouse IV, Jun 21 2013] [See A351830 for further related comments and references.]
Number of rhombi in an n X n rhombus. - Matti De Craene (Matti.DeCraene(AT)rug.ac.be), May 14 2000
Number of acute triangles made from the vertices of a regular n-polygon when n is odd (cf. A007290). - Sen-Peng Eu, Apr 05 2001
Gives number of squares with sides parallel to the axes formed from an n X n square. In a 1 X 1 square, one is formed. In a 2 X 2 square, five squares are formed. In a 3 X 3 square, 14 squares are formed and so on. - Kristie Smith (kristie10spud(AT)hotmail.com), Apr 16 2002; edited by Eric W. Weisstein, Mar 05 2025
a(n-1) = B_3(n)/3, where B_3(x) = x(x-1)(x-1/2) is the third Bernoulli polynomial. - Michael Somos, Mar 13 2004
Number of permutations avoiding 13-2 that contain the pattern 32-1 exactly once.
Since 3*r = (r+1) + r + (r-1) = T(r+1) - T(r-2), where T(r) = r-th triangular number r*(r+1)/2, we have 3*r^2 = r*(T(r+1) - T(r-2)) = f(r+1) - f(r-1) ... (i), where f(r) = (r-1)*T(r) = (r+1)*T(r-1). Summing over n, the right hand side of relation (i) telescopes to f(n+1) + f(n) = T(n)*((n+2) + (n-1)), whence the result Sum_{r=1..n} r^2 = n*(n+1)*(2*n+1)/6 immediately follows. - Lekraj Beedassy, Aug 06 2004
Also as a(n) = (1/6)*(2*n^3 + 3*n^2 + n), n > 0: structured trigonal diamond numbers (vertex structure 5) (cf. A006003 = alternate vertex; A000447 = structured diamonds; A100145 for more on structured numbers). - James A. Record (james.record(AT)gmail.com), Nov 07 2004
Number of triples of integers from {1, 2, ..., n} whose last component is greater than or equal to the others.
Kekulé numbers for certain benzenoids. - Emeric Deutsch, Jun 12 2005
Sum of the first n positive squares. - Cino Hilliard, Jun 18 2007
Maximal number of cubes of side 1 in a right pyramid with a square base of side n and height n. - Pasquale CUTOLO (p.cutolo(AT)inwind.it), Jul 09 2007
If a 2-set Y and an (n-2)-set Z are disjoint subsets of an n-set X then a(n-3) is the number of 4-subsets of X intersecting both Y and Z. - Milan Janjic, Sep 19 2007
We also have the identity 1 + (1+4) + (1+4+9) + ... + (1+4+9+16+ ... + n^2) = n(n+1)(n+2)(n+(n+1)+(n+2))/36; ... and in general the k-fold nested sum of squares can be expressed as n(n+1)...(n+k)(n+(n+1)+...+(n+k))/((k+2)!(k+1)/2). - Alexander R. Povolotsky, Nov 21 2007
The terms of this sequence are coefficients of the Engel expansion of the following converging sum: 1/(1^2) + (1/1^2)*(1/(1^2+2^2)) + (1/1^2)*(1/(1^2+2^2))*(1/(1^2+2^2+3^2)) + ... - Alexander R. Povolotsky, Dec 10 2007
Convolution of A000290 with A000012. - Sergio Falcon, Feb 05 2008
Hankel transform of binomial(2*n-3, n-1) is -a(n). - Paul Barry, Feb 12 2008
Starting (1, 5, 14, 30, ...) = binomial transform of [1, 4, 5, 2, 0, 0, 0, ...]. - Gary W. Adamson, Jun 13 2008
Starting (1,5,14,30,...) = second partial sums of binomial transform of [1,2,0,0,0,...]. a(n) = Sum_{i=0..n} binomial(n+2,i+2)*b(i), where b(i)=1,2,0,0,0,... - Borislav St. Borisov (b.st.borisov(AT)abv.bg), Mar 05 2009
Convolution of A001477 with A005408: a(n) = Sum_{k=0..n} (2*k+1)*(n-k). - Reinhard Zumkeller, Mar 07 2009
Sequence of the absolute values of the z^1 coefficients of the polynomials in the GF1 denominators of A156921. See A157702 for background information. - Johannes W. Meijer, Mar 07 2009
The sequence is related to A000217 by a(n) = n*A000217(n) - Sum_{i=0..n-1} A000217(i) and this is the case d = 1 in the identity n^2*(d*n-d+2)/2 - Sum_{i=0..n-1} i*(d*i-d+2)/2 = n*(n+1)(2*d*n-2*d+3)/6, or also the case d = 0 in n^2*(n+2*d+1)/2 - Sum_{i=0..n-1} i*(i+2*d+1)/2 = n*(n+1)*(2*n+3*d+1)/6. - Bruno Berselli, Apr 21 2010, Apr 03 2012
a(n)/n = k^2 (k = integer) for n = 337; a(337) = 12814425, a(n)/n = 38025, k = 195, i.e., the number k = 195 is the quadratic mean (root mean square) of the first 337 positive integers. There are other such numbers -- see A084231 and A084232. - Jaroslav Krizek, May 23 2010
Also the number of moves to solve the "alternate coins game": given 2n+1 coins (n+1 Black, n White) set alternately in a row (BWBW...BWB) translate (not rotate) a pair of adjacent coins at a time (1 B and 1 W) so that at the end the arrangement shall be BBBBB..BW...WWWWW (Blacks separated by Whites). Isolated coins cannot be moved. - Carmine Suriano, Sep 10 2010
From J. M. Bergot, Aug 23 2011: (Start)
Using four consecutive numbers n, n+1, n+2, and n+3 take all possible pairs (n, n+1), (n, n+2), (n, n+3), (n+1, n+2), (n+1, n+3), (n+2, n+3) to create unreduced Pythagorean triangles. The sum of all six areas is 60*a(n+1).
Using three consecutive odd numbers j, k, m, (j+k+m)^3 - (j^3 + k^3 + m^3) equals 576*a(n) = 24^2*a(n) where n = (j+1)/2. (End)
From Ant King, Oct 17 2012: (Start)
For n > 0, the digital roots of this sequence A010888(a(n)) form the purely periodic 27-cycle {1, 5, 5, 3, 1, 1, 5, 6, 6, 7, 2, 2, 9, 7, 7, 2, 3, 3, 4, 8, 8, 6, 4, 4, 8, 9, 9}.
For n > 0, the units' digits of this sequence A010879(a(n)) form the purely periodic 20-cycle {1, 5, 4, 0, 5, 1, 0, 4, 5, 5, 6, 0, 9, 5, 0, 6, 5, 9, 0, 0}. (End)
Length of the Pisano period of this sequence mod n, n>=1: 1, 4, 9, 8, 5, 36, 7, 16, 27, 20, 11, 72, 13, 28, 45, 32, 17, 108, 19, 40, ... . - R. J. Mathar, Oct 17 2012
Sum of entries of n X n square matrix with elements min(i,j). - Enrique Pérez Herrero, Jan 16 2013
The number of intersections of diagonals in the interior of regular n-gon for odd n > 1 divided by n is a square pyramidal number; that is, A006561(2*n+1)/(2*n+1) = A000330(n-1) = (1/6)*n*(n-1)*(2*n-1). - Martin Renner, Mar 06 2013
For n > 1, a(n)/(2n+1) = A024702(m), for n such that 2n+1 = prime, which results in 2n+1 = A000040(m). For example, for n = 8, 2n+1 = 17 = A000040(7), a(8) = 204, 204/17 = 12 = A024702(7). - Richard R. Forberg, Aug 20 2013
A formula for the r-th successive summation of k^2, for k = 1 to n, is (2*n+r)*(n+r)!/((r+2)!*(n-1)!) (H. W. Gould). - Gary Detlefs, Jan 02 2014
The n-th square pyramidal number = the n-th triangular dipyramidal number (Johnson 12), which is the sum of the n-th + (n-1)-st tetrahedral numbers. E.g., the 3rd tetrahedral number is 10 = 1+3+6, the 2nd is 4 = 1+3. In triangular "dipyramidal form" these numbers can be written as 1+3+6+3+1 = 14. For "square pyramidal form", rebracket as 1+(1+3)+(3+6) = 14. - John F. Richardson, Mar 27 2014
Beukers and Top prove that no square pyramidal number > 1 equals a tetrahedral number A000292. - Jonathan Sondow, Jun 21 2014
Odd numbered entries are related to dissections of polygons through A100157. - Tom Copeland, Oct 05 2014
From Bui Quang Tuan, Apr 03 2015: (Start)
We construct a number triangle from the integers 1, 2, 3, ..., n as follows. The first column contains 2*n-1 integers 1. The second column contains 2*n-3 integers 2, ... The last column contains only one integer n. The sum of all the numbers in the triangle is a(n).
Here is an example with n = 5:
1
1 2
1 2 3
1 2 3 4
1 2 3 4 5
1 2 3 4
1 2 3
1 2
1
(End)
The Catalan number series A000108(n+3), offset 0, gives Hankel transform revealing the square pyramidal numbers starting at 5, A000330(n+2), offset 0 (empirical observation). - Tony Foster III, Sep 05 2016; see Dougherty et al. link p. 2. - Andrey Zabolotskiy, Oct 13 2016
Number of floating point additions in the factorization of an (n+1) X (n+1) real matrix by Gaussian elimination as e.g. implemented in LINPACK subroutines sgefa.f or dgefa.f. The number of multiplications is given by A007290. - Hugo Pfoertner, Mar 28 2018
The Jacobi polynomial P(n-1,-n+2,2,3) or equivalently the sum of dot products of vectors from the first n rows of Pascal's triangle (A007318) with the up-diagonal Chebyshev T coefficient vector (1,3,2,0,...) (A053120) or down-diagonal vector (1,-7,32,-120,400,...) (A001794). a(5) = 1 + (1,1).(1,3) + (1,2,1).(1,3,2) + (1,3,3,1).(1,3,2,0) + (1,4,6,4,1).(1,3,2,0,0) = (1 + (1,1).(1,-7) + (1,2,1).(1,-7,32) + (1,3,3,1).(1,-7,32,-120) + (1,4,6,4,1).(1,-7,32,-120,400))*(-1)^(n-1) = 55. - Richard Turk, Jul 03 2018
Coefficients in the terminating series identity 1 - 5*n/(n + 4) + 14*n*(n - 1)/((n + 4)*(n + 5)) - 30*n*(n - 1)*(n - 2)/((n + 4)*(n + 5)*(n + 6)) + ... = 0 for n = 1,2,3,.... Cf. A002415 and A108674. - Peter Bala, Feb 12 2019
n divides a(n) iff n == +- 1 (mod 6) (see A007310). (See De Koninck reference.) Examples: a(11) = 506 = 11 * 46, and a(13) = 819 = 13 * 63. - Bernard Schott, Jan 10 2020
For n > 0, a(n) is the number of ternary words of length n+2 having 3 letters equal to 2 and 0 only occurring as the last letter. For example, for n=2, the length 4 words are 2221,2212,2122,1222,2220. - Milan Janjic, Jan 28 2020
Conjecture: Every integer can be represented as a sum of three generalized square pyramidal numbers. A related conjecture is given in A336205 corresponding to pentagonal case. A stronger version of these conjectures is that every integer can be expressed as a sum of three generalized r-gonal pyramidal numbers for all r >= 3. In here "generalized" means negative indices are included. - Altug Alkan, Jul 30 2020
The natural number y is a term if and only if y = a(floor((3 * y)^(1/3))). - Robert Israel, Dec 04 2024
Also the number of directed bishop moves on an n X n chessboard, where two moves are considered the same if one can be obtained from the other by a rotation of the board. Reflections are ignored. Equivalently, number of directed bishop moves on an n X n chessboard, where two moves are considered the same if one can be obtained from the other by an axial reflection of the board (horizontal or vertical). Rotations and diagonal reflections are ignored. - Hilko Koning, Aug 22 2025

Examples

			G.f. = x + 5*x^2 + 14*x^3 + 30*x^4 + 55*x^5 + 91*x^6 + 140*x^7 + 204*x^8 + ...
		

References

  • M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards Applied Math. Series 55, 1964 (and various reprintings), p. 813.
  • A. H. Beiler, Recreations in the Theory of Numbers, Dover Publications, NY, 1964, p. 194.
  • A. T. Benjamin and J. J. Quinn, Proofs that really count: the art of combinatorial proof, M.A.A. 2003, id. 215,223.
  • L. Comtet, Advanced Combinatorics, Reidel, 1974, p. 122, see #19 (3(1)), I(n); p. 155.
  • John H. Conway and Richard K. Guy, The Book of Numbers, New York: Springer-Verlag, 1996. See pp. 47-49.
  • H. S. M. Coxeter, Polyhedral numbers, pp. 25-35 of R. S. Cohen, J. J. Stachel and M. W. Wartofsky, eds., For Dirk Struik: Scientific, historical and political essays in honor of Dirk J. Struik, Reidel, Dordrecht, 1974.
  • S. J. Cyvin and I. Gutman, Kekulé structures in benzenoid hydrocarbons, Lecture Notes in Chemistry, No. 46, Springer, New York, 1988 (p.165).
  • J. M. De Koninck and A. Mercier, 1001 Problèmes en Théorie Classique des Nombres, Problème 310, pp. 46-196, Ellipses, Paris, 2004.
  • E. Deza and M. M. Deza, Figurate numbers, World Scientific Publishing (2012), page 93.
  • L. E. Dickson, History of the Theory of Numbers. Carnegie Institute Public. 256, Washington, DC, Vol. 1, 1919; Vol. 2, 1920; Vol. 3, 1923, see vol. 2, p. 2.
  • M. Gardner, Fractal Music, Hypercards and More, Freeman, NY, 1991, p. 293.
  • Jan Gullberg, Mathematics from the Birth of Numbers, W. W. Norton & Co., NY & London, 1997, §8.6 Figurate Numbers, p. 293.
  • M. Holt, Math puzzles and games, Walker Publishing Company, 1977, p. 2 and p. 89.
  • Simon Singh, The Simpsons and Their Mathematical Secrets. London: Bloomsbury Publishing PLC (2013): 188.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
  • David Wells, The Penguin Dictionary of Curious and Interesting Numbers. Penguin Books, NY, 1986, Revised edition 1987. See p. 126.

Crossrefs

Sums of 2 consecutive terms give A005900.
Column 0 of triangle A094414.
Column 1 of triangle A008955.
Right side of triangle A082652.
Row 2 of array A103438.
Partial sums of A000290.
Cf. similar sequences listed in A237616 and A254142.
Cf. |A084930(n, 1)|.
Cf. A253903 (characteristic function).
Cf. A034705 (differences of any two terms).

Programs

  • GAP
    List([0..30], n-> n*(n+1)*(2*n+1)/6); # G. C. Greubel, Dec 31 2019
  • Haskell
    a000330 n = n * (n + 1) * (2 * n + 1) `div` 6
    a000330_list = scanl1 (+) a000290_list
    -- Reinhard Zumkeller, Nov 11 2012, Feb 03 2012
    
  • Magma
    [n*(n+1)*(2*n+1)/6: n in [0..50]]; // Wesley Ivan Hurt, Jun 28 2014
    
  • Magma
    [0] cat [((2*n+3)*Binomial(n+2,2))/3: n in [0..40]]; // Vincenzo Librandi, Jul 30 2014
    
  • Maple
    A000330 := n -> n*(n+1)*(2*n+1)/6;
    a := n->(1/6)*n*(n+1)*(2*n+1): seq(a(n),n=0..53); # Emeric Deutsch
    with(combstruct): ZL:=[st, {st=Prod(left, right), left=Set(U, card=r), right=Set(U, card=r), U=Sequence(Z, card>=1)}, unlabeled]: subs(r=1, stack): seq(count(subs(r=2, ZL), size=m*2), m=1..45) ; # Zerinvary Lajos, Jan 02 2008
    nmax := 44; for n from 0 to nmax do fz(n) := product( (1-(2*m-1)*z)^(n+1-m) , m=1..n); c(n) := abs(coeff(fz(n),z,1)); end do: a := n-> c(n): seq(a(n), n=0..nmax); # Johannes W. Meijer, Mar 07 2009
  • Mathematica
    Table[Binomial[w+2, 3] + Binomial[w+1, 3], {w, 0, 30}]
    CoefficientList[Series[x(1+x)/(1-x)^4, {x, 0, 40}], x] (* Vincenzo Librandi, Jul 30 2014 *)
    Accumulate[Range[0,50]^2] (* Harvey P. Dale, Sep 25 2014 *)
  • Maxima
    A000330(n):=binomial(n+2,3)+binomial(n+1,3)$
    makelist(A000330(n),n,0,20); /* Martin Ettl, Nov 12 2012 */
    
  • PARI
    {a(n) = n * (n+1) * (2*n+1) / 6};
    
  • PARI
    upto(n) = [x*(x+1)*(2*x+1)/6 | x<-[0..n]] \\ Cino Hilliard, Jun 18 2007, edited by M. F. Hasler, Jan 02 2024
    
  • Python
    a=lambda n: (n*(n+1)*(2*n+1))//6 # Indranil Ghosh, Jan 04 2017
    
  • Sage
    [n*(n+1)*(2*n+1)/6 for n in (0..30)] # G. C. Greubel, Dec 31 2019
    

Formula

G.f.: x*(1+x)/(1-x)^4. - Simon Plouffe (in his 1992 dissertation: generating function for sequence starting at a(1))
E.g.f.: (x + 3*x^2/2 + x^3/3)*exp(x).
a(n) = n*(n+1)*(2*n+1)/6 = binomial(n+2, 3) + binomial(n+1, 3).
2*a(n) = A006331(n). - N. J. A. Sloane, Dec 11 1999
Can be extended to Z with a(n) = -a(-1-n) for all n in Z.
a(n) = A002492(n)/4. - Paul Barry, Jul 19 2003
a(n) = (((n+1)^4 - n^4) - ((n+1)^2 - n^2))/12. - Xavier Acloque, Oct 16 2003
From Alexander Adamchuk, Oct 26 2004: (Start)
a(n) = sqrt(A271535(n)).
a(n) = (Sum_{k=1..n} Sum_{j=1..n} Sum_{i=1..n} (i*j*k)^2)^(1/3). (End)
a(n) = Sum_{i=1..n} i*(2*n-2*i+1); sum of squares gives 1 + (1+3) + (1+3+5) + ... - Jon Perry, Dec 08 2004
a(n+1) = A000217(n+1) + 2*A000292(n). - Creighton Dement, Mar 10 2005
Sum_{n>=1} 1/a(n) = 6*(3-4*log(2)); Sum_{n>=1} (-1)^(n+1)*1/a(n) = 6*(Pi-3). - Philippe Deléham, May 31 2005
Sum of two consecutive tetrahedral (or pyramidal) numbers a(n) = A000292(n-1) + A000292(n). - Alexander Adamchuk, May 17 2006
Euler transform of length-2 sequence [ 5, -1 ]. - Michael Somos, Sep 04 2006
a(n) = a(n-1) + n^2. - Rolf Pleisch, Jul 22 2007
a(n) = A132121(n,0). - Reinhard Zumkeller, Aug 12 2007
a(n) = binomial(n, 2) + 2*binomial(n, 3). - Borislav St. Borisov (b.st.borisov(AT)abv.bg), Mar 05 2009, corrected by M. F. Hasler, Jan 02 2024
a(n) = A168559(n) + 1 for n > 0. - Reinhard Zumkeller, Feb 03 2012
a(n) = Sum_{i=1..n} J_2(i)*floor(n/i), where J_2 is A007434. - Enrique Pérez Herrero, Feb 26 2012
a(n) = s(n+1, n)^2 - 2*s(n+1, n-1), where s(n, k) are Stirling numbers of the first kind, A048994. - Mircea Merca, Apr 03 2012
a(n) = A001477(n) + A000217(n) + A007290(n+2) + 1. - J. M. Bergot, May 31 2012
a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3) + 2. - Ant King, Oct 17 2012
a(n) = Sum_{i = 1..n} Sum_{j = 1..n} min(i,j). - Enrique Pérez Herrero, Jan 15 2013
a(n) = A000217(n) + A007290(n+1). - Ivan N. Ianakiev, May 10 2013
a(n) = (A047486(n+2)^3 - A047486(n+2))/24. - Richard R. Forberg, Dec 25 2013
a(n) = Sum_{i=0..n-1} (n-i)*(2*i+1), with a(0) = 0. After 0, row sums of the triangle in A101447. - Bruno Berselli, Feb 10 2014
a(n) = n + 1 + Sum_{i=1..n+1} (i^2 - 2i). - Wesley Ivan Hurt, Feb 25 2014
a(n) = A000578(n+1) - A002412(n+1). - Wesley Ivan Hurt, Jun 28 2014
a(n) = Sum_{i = 1..n} Sum_{j = i..n} max(i,j). - Enrique Pérez Herrero, Dec 03 2014
a(n) = A055112(n)/6, see Singh (2013). - Alonso del Arte, Feb 20 2015
For n >= 2, a(n) = A028347(n+1) + A101986(n-2). - Bui Quang Tuan, Apr 03 2015
For n > 0: a(n) = A258708(n+3,n-1). - Reinhard Zumkeller, Jun 23 2015
a(n) = A175254(n) + A072481(n), n >= 1. - Omar E. Pol, Aug 12 2015
a(n) = A000332(n+3) - A000332(n+1). - Antal Pinter, Dec 27 2015
Dirichlet g.f.: zeta(s-3)/3 + zeta(s-2)/2 + zeta(s-1)/6. - Ilya Gutkovskiy, Jun 26 2016
a(n) = A080851(2,n-1). - R. J. Mathar, Jul 28 2016
a(n) = (A005408(n) * A046092(n))/12 = (2*n+1)*(2*n*(n+1))/12. - Bruce J. Nicholson, May 18 2017
12*a(n) = (n+1)*A001105(n) + n*A001105(n+1). - Bruno Berselli, Jul 03 2017
a(n) = binomial(n-1, 1) + binomial(n-1, 2) + binomial(n, 3) + binomial(n+1, 2) + binomial(n+1, 3). - Tony Foster III, Aug 24 2018
a(n) = 4*a(n-1) - 6*a(n-2) + 4*a(n-3) - a(n-4). - Nathan Fox, Dec 04 2019
Let T(n) = A000217(n), the n-th triangular number. Then a(n) = (T(n)+1)^2 + (T(n)+2)^2 + ... + (T(n)+n)^2 - (n+2)*T(n)^2. - Charlie Marion, Dec 31 2019
a(n) = 2*n - 1 - a(n-2) + 2*a(n-1). - Boštjan Gec, Nov 09 2023
a(n) = 2/(2*n)! * Sum_{j = 1..n} (-1)^(n+j) * j^(2*n+2) * binomial(2*n, n-j). Cf. A060493. - Peter Bala, Mar 31 2025

Extensions

Partially edited by Joerg Arndt, Mar 11 2010

A006356 a(n) = 2*a(n-1) + a(n-2) - a(n-3) for n >= 3, starting with a(0) = 1, a(1) = 3, and a(2) = 6.

Original entry on oeis.org

1, 3, 6, 14, 31, 70, 157, 353, 793, 1782, 4004, 8997, 20216, 45425, 102069, 229347, 515338, 1157954, 2601899, 5846414, 13136773, 29518061, 66326481, 149034250, 334876920, 752461609, 1690765888, 3799116465, 8536537209, 19181424995
Offset: 0

Views

Author

Keywords

Comments

Number of distributive lattices; also number of paths with n turns when light is reflected from 3 glass plates.
Let u(k), v(k), w(k) be defined by u(1) = 1, v(1) = 0, w(1) = 0 and u(k+1) = u(k) + v(k) + w(k), v(k+1) = u(k) + v(k), w(k+1) = u(k); then {u(n)} = 1, 1, 3, 6, 14, 31, ... (this sequence with an extra initial 1), {v(n)} = 0, 1, 2, 5, 11, 25, ... (A006054 with its initial 0 deleted) and {w(n)} = {u(n)} prefixed by an extra 0 = A077998 with an extra initial 0. - Benoit Cloitre, Apr 05 2002
Also u(k)^2 + v(k)^2 + w(k)^2 = u(2*k). - Gary W. Adamson, Dec 23 2003
The n-th term of the series is the number of paths for a ray of light that enters two layers of glass and then is reflected exactly n times before leaving the layers of glass.
One such path (with 2 plates of glass and 3 reflections) might be:
...\........./..................
--------------------------------
....\/\..../....................
--------------------------------
........\/......................
--------------------------------
For a k-glass sequence, say a(n,k), a(n,k) is always asymptotic to z(k)*w(k)^n where w(k) = (1/2)/cos(k*Pi/(2*k+1)) and it is conjectured that z(k) is the root 1 < x < 2 of a polynomial of degree Phi(2k+1)/2.
Number of ternary sequences of length n-1 such that every pair of consecutive digits has a sum less than 3. That is to say, the pairs (1,2), (2,1) and (2,2) do not appear. - George J. Schaeffer (gschaeff(AT)andrew.cmu.edu), Sep 07 2004
Number of weakly up-down sequences of length n using the digits {1,2,3}. When n=2 the sequences are 11, 12, 13, 22, 23, 33.
Form the graph with matrix A = [1, 1, 1; 1, 0, 0; 1, 0, 1]. Then A006356 counts walks of length n that start at the degree 4 vertex. - Paul Barry, Oct 02 2004
In general, the g.f. for p glass plates is: A(x) = F_{p-1}(-x)/F_p(x) where F_p(x) = Sum_{k=0..p} (-1)^[(k+1)/2]*C([(p+k)/2],k)*x^k. - Paul D. Hanna, Feb 06 2006
Equals the INVERT transform of (1, 2, 1, 1, 1, ...) equivalent to a(n) = a(n-1) + 2*a(n-2) + a(n-3) + a(n-4) + ... + 1. a(6) = 70 = (31 + 2*14 + 6 + 3 + 1 + 1). - Gary W. Adamson, Apr 27 2009
a(n) = the number of terms in the n-th iterate of sequence A179542 generated from the rules a(0) = 1, then (1->1,2,3), (2->1,2), (3->1).
Example: 3rd iterate = (1,2,3,1,2,1,1,2,3,1,2,1,2,3) = 14 terms composed of a frequency of (6, 5, 3): (1's, 2's, and 3's), where a(3) = 14, and the [6, 5, 3] = top row and left column of the 3rd power of M, the matrix generator [1,1,1; 1,1,0; 1,0,0] or a(2) = 6, A006054(4) = 5, and a(1) = 3.
Given the heptagon diagonal lengths with edge = 1: (a = 1, b = 1.80193773..., c = 2.24697...) = (1, 2*cos(Pi/7), (1 + 2*cos(2*Pi/7))), and using the diagonal product formulas in [Steinbach], we obtain: c^n = c*a(n-2) + b*A006054(n) + a(n-3) corresponding to the top row of M^(n-1), in the case M^3 = [6, 5, 3]. Example: c^4 = 25.491566... = 6*c + 5*b + 3 = 13.481... + 9.00968... + 3. - Gary W. Adamson, Jul 18 2010
Equals row sums of triangle A180262. - Gary W. Adamson, Aug 21 2010
The number of the one-sided n-step prudent walks, avoiding 2 or more consecutive east steps. - Shanzhen Gao, Apr 27 2011
a(n) = [A_{7,2}^(n+2)](1,1), where A{7,2} is the 3 X 3 unit-primitive matrix (see [Jeffery]) A_{7,2} = [0,0,1; 0,1,1; 1,1,1]. The denominator of the generating function for this sequence is also the characteristic polynomial of A_{7,2}. - L. Edson Jeffery, Dec 06 2011 [See the comments for sequence A306334. - Petros Hadjicostas, Nov 17 2019]
a(n) is the top left entry of the n-th power of the 3 X 3 matrix [1, 1, 1; 1, 0, 0; 1, 0, 1] or of the 3 X 3 matrix [1, 1, 1; 1, 1, 0; 1, 0, 0]. - R. J. Mathar, Feb 03 2014
Successive sequences in this set (A006356, A006357, A006358, etc.) can be generated as follows: Begin with (1, 1, 1, 1, 1, 1, ...); and perform an operation with three steps to get the next sequence in the series. First, put alternate signs in the current series: With (1, 1, 1, ...) this equals (1, -1, 1, -1, ...); then take the inverse, getting (1, 1, 0, 0, 0, ...). Take the INVERT transform of the last step, getting (1, 2, 3, 5, 8, ...). Repeat the three steps using (1, 2, 3, 5, ...) --> (1, -2, 3, -5) --> (1, 2, 1, 1, 1, ...) --> (1, 3, 6, 14, 31, ...). Repeat the three steps using (1, 3, 6, 14, 31, ...), getting (1, 4, 10, 30, 85, ...) = A006357; and so on. - Gary W. Adamson, Aug 08 2019
Let W_n be the fence poset (a.k.a. zig-zag poset) of size n. Let [2] be a chain of size 2. Then a(n) is the number of antichains in the product poset W_n X [2]. See Berman- Koehler link. - Geoffrey Critzer, Jun 13 2023
a(n) is the number of double-dimer covers of the 2 X (n+1) square grid graph. See Musiker et al. link. - Nicholas Ovenhouse, Jan 07 2024
In general, the number of weakly up-down words of length n over an alphabet of size k is given by 4/(2*k+1)*|Sum_{j = 1..k} sin^2(2*j*Pi/(2*k+1))/(2*cos^2(2*j*Pi/(2*k+1)))^(n+1)| and the corresponding g. f. is given by V_(k-1)(-x/2)/W_k(x/2) if k is even and -W_(k-1)(-x/2) / V_k(x/2) if k is odd, where V_m(x) and W_m(x) are the Chebyshev polynomials of the third and fourth kind, respectively (see Paul D. Hanna's comment above and the Fried link). - Sela Fried, Apr 01 2025

References

  • J. Berman and P. Koehler, Cardinalities of finite distributive lattices, Mitteilungen aus dem Mathematischen Seminar Giessen, 121 (1976), 103-124.
  • S. J. Cyvin and I. Gutman, Kekulé structures in benzenoid hydrocarbons, Lecture Notes in Chemistry, No. 46, Springer, New York, 1988 (see p. 120).
  • R. L. Graham, D. E. Knuth and O. Patashnik, Concrete Mathematics. Addison-Wesley, Reading, MA, 2nd edition, p. 291 (very briefly without generalizations).
  • J. Haubrich, Multinacci Rijen [Multinacci sequences], Euclides (Netherlands), Vol. 74, Issue 4, 1998, pp. 131-133.
  • Jay Kappraff, Beyond Measure, A Guided Tour Through Nature, Myth and Number, World Scientific, 2002.
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Cf. A038196 (3-wave sequence).
Cf. A179542. - Gary W. Adamson, Jul 18 2010
Cf. A180262. - Gary W. Adamson, Aug 21 2010

Programs

  • Haskell
    a006056 n = a006056_list !! n
    a006056_list = 1 : 3 : 6 : zipWith (+) (map (2 *) $ drop 2 a006056_list)
       (zipWith (-) (tail a006056_list) a006056_list)
    -- Reinhard Zumkeller, Oct 14 2011
    
  • Magma
    [ n eq 1 select 1 else n eq 2 select 3 else n eq 3 select 6 else 2*Self(n-1)+Self(n-2)- Self(n-3): n in [1..40] ] ; // Vincenzo Librandi, Aug 20 2011
    
  • Maple
    A006356:=-(-1-z+z**2)/(1-2*z-z**2+z**3); # conjectured by Simon Plouffe in his 1992 dissertation
  • Mathematica
    LinearRecurrence[{2,1,-1},{1,3,6},30] (* or *) CoefficientList[ Series[ (1+x-x^2)/(1-2x-x^2+x^3),{x,0,30}],x] (* Harvey P. Dale, Jul 06 2011 *)
    Table[If[n==0, a2=0; a1=1; a0=1, a3=a2; a2=a1; a1=a0; a0=2*a1+a2-a3], {n, 0, 29}] (* Jean-François Alcover, Apr 30 2013 *)
  • Maxima
    a(n):=sum(sum((sum(binomial(j,-3*k+2*j+i)*(-1)^(j-k)*binomial(k,j),j,0,k))*binomial(n+k-i-1,k-1),i,k,n),k,1,n); /* Vladimir Kruchinin, May 05 2011 */
    
  • PARI
    {a(n)=local(p=3);polcoeff(sum(k=0,p-1,(-1)^((k+1)\2)*binomial((p+k-1)\2,k)* (-x)^k)/sum(k=0,p,(-1)^((k+1)\2)*binomial((p+k)\2,k)*x^k+x*O(x^n)),n)} \\ Paul D. Hanna, Feb 06 2006
    
  • PARI
    Vec((1+x-x^2)/(1-2*x-x^2+x^3)+O(x^66)) \\ Joerg Arndt, Apr 30 2013
    
  • Python
    from math import comb
    def A006356(n): return sum(comb(j,a)*comb(k,j)*comb(n+k-i,k-1)*(-1 if j-k&1 else 1) for k in range(1,n+2) for i in range(k,n+2) for j in range(k+1) if (a:=-3*k+2*j+i)>=0) # Chai Wah Wu, Feb 19 2024

Formula

a(n) is asymptotic to z(3)*w(3)^n where w(3) = (1/2)/cos(3*Pi/7) and z(3) is the root 1 < X < 2 of P(3, X) = 1 - 14*X - 49*X^2 + 49*X^3. w(3) = 2.2469796.... z(3) = 1.220410935...
G.f.: (1 + x - x^2)/(1 - 2*x - x^2 + x^3). - Paul D. Hanna, Feb 06 2006
a(n) = a(n-1) + a(n-2) + A006054(n+1). - Gary W. Adamson, Jun 05 2008
a(n) = A006054(n+2) + A006054(n+1) - A006054(n). - R. J. Mathar, Apr 07 2011
a(n-1) = Sum_{k = 1..n} Sum_{i = k..n} Sum_{j = 0..k} binomial(j, -3*k+2*j+i) * (-1)^(j-k) * binomial(k, j) * binomial(n+k-i-1, k-1). - Vladimir Kruchinin, May 05 2011
Sum_{k=0..n} a(k) = a(n+1) - a(n-1) - 1. - Greg Dresden and Mina BH Arsanious, Aug 23 2023

Extensions

Recurrence, alternative description from Jacques Haubrich (jhaubrich(AT)freeler.nl)
Alternative definition added by Andrew Niedermaier, Nov 11 2008

A006322 4-dimensional analog of centered polygonal numbers.

Original entry on oeis.org

1, 8, 31, 85, 190, 371, 658, 1086, 1695, 2530, 3641, 5083, 6916, 9205, 12020, 15436, 19533, 24396, 30115, 36785, 44506, 53383, 63526, 75050, 88075, 102726, 119133, 137431, 157760, 180265, 205096, 232408, 262361, 295120, 330855, 369741, 411958, 457691, 507130
Offset: 1

Views

Author

Albert Rich (Albert_Rich(AT)msn.com)

Keywords

Comments

Kekulé numbers for certain benzenoids. - Emeric Deutsch, Nov 18 2005
Partial sums give A006414. - L. Edson Jeffery, Dec 13 2011
Also the number of (w,x,y,z) with all terms in {1,...,n} and w<=x>=y<=z, see A211795. - Clark Kimberling, May 19 2012

Examples

			An illustration for a(5)=190: 5*(1+2+3+4+5)+4*(2+3+4+5)+3*(3+4+5)+2*(4+5)+1*(5) gives 75+56+36+18+5=190. - _J. M. Bergot_, Feb 13 2018
		

References

  • S. J. Cyvin and I. Gutman, Kekulé structures in benzenoid hydrocarbons, Lecture Notes in Chemistry, No. 46, Springer, New York, 1988 (see p. 166, Table 10.4/I/4).

Crossrefs

Programs

  • GAP
    List([1..40], n->5*Binomial(n+2,4) + Binomial(n+1,2)); # Muniru A Asiru, Feb 13 2018
    
  • Magma
    [n*(n+1)*(5*n^2 +5*n +2)/24: n in [1..40]]; // G. C. Greubel, Sep 02 2019
    
  • Maple
    a:=n->5*binomial(n+2,4) + binomial(n+1,2): seq(a(n), n=1..40); # Muniru A Asiru, Feb 13 2018
  • Mathematica
    Table[5*Binomial[n+2, 4] + Binomial[n+1, 2], {n, 40}] (* Vladimir Joseph Stephan Orlovsky, Apr 18 2011 *)
    CoefficientList[Series[(1+3x+x^2)/(1-x)^5, {x,0,40}], x] (* Vincenzo Librandi, Jun 09 2013 *)
    LinearRecurrence[{5,-10,10,-5,1},{1,8,31,85,190},40] (* Harvey P. Dale, Sep 27 2016 *)
  • PARI
    a(n)=n*(5*n^3+10*n^2+7*n+2)/24 \\ Charles R Greathouse IV, Dec 13 2011, corrected by Altug Alkan, Aug 15 2017
    
  • Sage
    [n*(n+1)*(5*n^2 +5*n +2)/24 for n in (1..40)] # G. C. Greubel, Sep 02 2019

Formula

a(n) = 5*C(n+2,4) + C(n+1,2) = (C(5*n+4,4) - 1)/5^3 = n*(n+1)*(5*n^2 + 5*n + 2)/24.
a(n) = (((n+1)^5-n^5) - ((n+1)^3-n^3))/24. - Xavier Acloque, Jan 14 2003, corrected by Eric Rowland, Aug 15 2017
Partial sums of A004068. - Xavier Acloque, Jan 15 2003
G.f.: x*(1+3*x+x^2)/(1-x)^5. - Maksym Voznyy (voznyy(AT)mail.ru), Aug 10 2009
a(n) = Sum_{i=1..n} Sum_{j=1..n} i * min(i,j). - Enrique Pérez Herrero, Jan 30 2013
a(n) = A000537(n) - A000332(n+2). - J. M. Bergot, Jun 03 2017
Sum_{n>=1} 1/a(n) = 42 - 4*sqrt(15)*Pi*tanh(sqrt(3/5)*Pi/2). - Amiram Eldar, May 28 2022
From Elmo R. Oliveira, Aug 14 2025: (Start)
E.g.f.: exp(x)*x*(2 + x)*(12 + 30*x + 5*x^2)/24.
a(n) = 5*a(n-1) - 10*a(n-2) + 10*a(n-3) - 5*a(n-4) + a(n-5) for n > 5. (End)

A050447 Table T(n,m) giving total degree of n-th-order elementary symmetric polynomials in m variables, -1 <= n, 1 <= m, transposed and read by upward antidiagonals.

Original entry on oeis.org

1, 1, 1, 1, 2, 1, 1, 3, 3, 1, 1, 4, 6, 5, 1, 1, 5, 10, 14, 8, 1, 1, 6, 15, 30, 31, 13, 1, 1, 7, 21, 55, 85, 70, 21, 1, 1, 8, 28, 91, 190, 246, 157, 34, 1, 1, 9, 36, 140, 371, 671, 707, 353, 55, 1, 1, 10, 45, 204, 658, 1547, 2353, 2037, 793, 89, 1, 1, 11, 55, 285, 1086, 3164, 6405, 8272, 5864, 1782, 144, 1
Offset: 0

Views

Author

N. J. A. Sloane, Dec 23 1999

Keywords

Examples

			Table begins
.    1   1   1    1     1      1       1       1        1         1
.    1   2   3    5     8     13      21      34       55        89
.    1   3   6   14    31     70     157     353      793      1782
.    1   4  10   30    85    246     707    2037     5864     16886
.    1   5  15   55   190    671    2353    8272    29056    102091
.    1   6  21   91   371   1547    6405   26585   110254    457379
.    1   7  28  140   658   3164   15106   72302   345775   1654092
.    1   8  36  204  1086   5916   31998  173502   940005   5094220
.    1   9  45  285  1695  10317   62349  377739  2286648  13846117
.    1  10  55  385  2530  17017  113641  760804  5089282  34053437
		

References

  • J. Berman and P. Koehler, Cardinalities of finite distributive lattices, Mitteilungen aus dem Mathematischen Seminar Giessen, 121 (1976), 103-124.
  • S. J. Cyvin and I. Gutman, Kekulé structures in benzenoid hydrocarbons, Lecture Notes in Chemistry, No. 46, Springer, New York, 1988 (see p. 120).
  • Manfred Goebel, Rewriting Techniques and Degree Bounds for Higher Order Symmetric Polynomials, Applicable Algebra in Engineering, Communication and Computing (AAECC), Volume 9, Issue 6 (1999), 559-573.

Crossrefs

Columns give A000012, A000027, A000217, A000330, A006322, ...

Programs

  • Mathematica
    nmax = 12; t[n_, m_?Positive] := t[n, m] = t[n, m-1] + Sum[t[2k, m-1]*t[n-1-2k, m], {k, 0, (n-1)/2}]; t[n_, 0]=1; Flatten[ Table[ t[k-1, n-k], {n, 1, nmax}, {k, 1, n}]] (* Jean-François Alcover, Nov 14 2011 *)
    nmax = 10; f[0, x_] := 1; f[1, x_] := 1/(1 - x); f[n_, x_] := (x + f[n - 2, x])/(1 - x^2 - x*f[n - 2, x]); t[n_, m_] := Coefficient[Series[f[n, x], {x, 0, m}], x, m]; Grid[Table[t[n, m], {n, nmax}, {m, 0, nmax - 1}]] (* L. Edson Jeffery, Oct 19 2017 *)
  • PARI
    M(n)=matrix(n,n,i,j,if(sign(i+j-n)-1,0,1)); V(n)=vector(n,i,1); P(r,n)=vecmax(V(r)*M(r)^n) \\ P(r,n) is T(n,k); Benoit Cloitre, Jan 27 2003

Formula

See PARI code. See A050446 for recurrence.
G.f. for row n >= 0: f(n, x) = (x + f(n-2, x))/(1 - x^2 - x*f(n-2, x)), where f(0, x) = 1 and f(1, x) = 1/(1 - x) [R. P. Stanley]. - L. Edson Jeffery, Oct 19 2017

Extensions

More terms from Naohiro Nomoto, Jul 03 2001

A205497 Triangle read by rows: Zig-zag Eulerian number triangle T(n, k).

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 3, 1, 1, 7, 7, 1, 1, 14, 31, 14, 1, 1, 26, 109, 109, 26, 1, 1, 46, 334, 623, 334, 46, 1, 1, 79, 937, 2951, 2951, 937, 79, 1, 1, 133, 2475, 12331, 20641, 12331, 2475, 133, 1, 1, 221, 6267, 47191, 123216, 123216, 47191, 6267, 221, 1
Offset: 0

Views

Author

L. Edson Jeffery, Jan 27 2012

Keywords

Comments

From Kyle Petersen, Jun 02 2024: (Start)
Coefficients of the "P-Eulerian" polynomial of a naturally labeled zig-zag poset, which counts linear extensions according to number of descents. T(n, k) is the number of linear extensions of the n-element zig-zag poset with k descents.
Also T(n, k) is the number of up-down permutations of length n with k "big returns". A big return is a pair (i, i+1) for which i appears more than one place to the right of i+1 in the permutation. This interpretation implies row sums are given by A000111. (End)
From L. Edson Jeffery, Jan 27 2012: (Start)
(Previous name:) Omitting the first two ones, a rectangular array M read by antidiagonals in which entry M_{n-k, k} in row n-k and column k, 0 <= k <= n, gives the coefficient of x^k in the numerator of the conjectured generating function for row n + 3 of the tabular form of A050446.
In the following, let M_{n, k} denote the entry in row n and column k of M, n, k in {0, 1, ...}.
Conjecture: 1. M_{n, k} = M_{k, n}, for all n and k; that is, M is symmetric about the central terms {1, 3, 31, 623,...}. (This has been verified for the first 100 antidiagonals of M.)
Conjecture: 2. For m in {3, 4,...}, row m of array A050446 has generating function of the form H_m(x)/(1 - x)^m, in which the numerator H_m(x) is a polynomial of degree m - 3 in x with coefficients given by the entries of the (m - 3)-th antidiagonal of M containing the sequence of entries {M_{m-3-j,j}}, j=0..m-3 (see the example below). It is known that H_1(x) = H_2(x) = 1.
Conjecture: 3. Define the Chebyshev polynomials of the second kind by U_0(t) = 1, U_1(t) = 2*t and U_r(t) = 2*t*U_(r-1)(t) - U_(r-2)(t) (r > 1). Assuming Conjecture 1, lim_{n -> infinity} M_{n+1, k}/M_{n, k} = U_k(cos(Pi/(2*k+3))) = spectral radius of the (k+1) X (k+1) unit-primitive matrix (see [Jeffery]) A_{2*k+3, k} = [0,...,0,1; 0,...,0,1,1; ...; 0,1,...,1; 1,...,1], with identical limits for the columns of the transpose M^T of M.
Conjecture: 4. Let S(u, v) denote the entry in row u and column v of triangle S = A187660, 0 <= v <= u. Define the polynomials P_u(x) = Sum[S(u, v)*x^v]. Assuming Conjecture 1, then (i) the generating function for row (or column) n of M is of the form
G_n(x)/((P_1(x))^(n+1) * (P_2(x))^n * ... * (P_n(x))^2 * P_(n+1)(x)),
in which (ii) the numerator G_n(x) is a polynomial of degree A005586(n), and (iii) the denominator is a polynomial of degree A000292(n+1).
Remarks: The coefficients in the numerators G_n(x) appear to have no pattern. The polynomial P_j(x), j in {1,...,n+1}, of Conjecture 4 is also obtained from the characteristic polynomial of the unit-primitive matrix A_{2*j+3,j} of Conjecture 3 by taking the exponents of the latter in reverse order; and P_j(x) is otherwise identical to the characteristic polynomial of the unit-primitive matrix A_{2*j+3,1}.
(End)
Conjecture: The Eulerian zig-zag polynomials have only negative and simple real roots and form a Sturm sequence, that is, p(n+1, x) has n real roots separated by the roots of p(n, x). This property was proved by Frobenius for the classical Eulerian polynomials. - Peter Luschny, Jun 04 2024

Examples

			From _Kyle Petersen_, Jun 02 2024: (Start)
Triangle T(n, k) begins:
  1;
  1;
  1;
  1,  1;
  1,  3,   1;
  1,  7,   7,    1;
  1, 14,  31,   14,    1;
  1, 26, 109,  109,   26,   1;
  1, 46, 334,  623,  334,  46,  1;
  1, 79, 937, 2951, 2951, 937, 79, 1;
  ...
For n=4, the naturally labeled zig-zag poset 1<3>2<4 has five linear extensions: 1234, 1243, 2134, 2143, 2413, and their descent numbers are (respectively) 0, 1, 1, 2, 1. Thus T(4,0) = 1, T(4,1) = 3, and T(4,2) = 1. Also with n=4, there are five up-down permutations: 1324, 1423, 2314, 2413, 3412, and their big return numbers are (respectively) 0, 1, 1, 2, 1. (End)
Without the first two ones the data can be seen as an array M read by antidiagonals. Christopher H. Gribble kindly calculated the first 100 antidiagonals which starts as:
  1,  1,   1,     1,      1,       1, ...
  1,  3,   7,    14,     26,      46, ...
  1,  7,  31,   109,    334,     937, ...
  1, 14, 109,   623,   2951,   12331, ...
  1, 26, 334,  2951,  20641,  123216, ...
  1, 46, 937, 12331, 123216, 1019051, ...
  ...
The antidiagonals of M written as the rows of a triangle, yielding then, by the conjectures and the definition of H_m(x), row m = 7 of table A050446 has generating function H_7(x)/(1-x)^7 = (Sum_{j=0..4} M_{4-j,j}*x^j)/(1-x)^7 = (1 + 14*x + 31*x^2 + 14*x^3 + x^4)/(1-x)^7.
		

Crossrefs

Programs

  • Maple
    Gn := proc(n) local F;
        if n = 0 then p*q*x/(1 - q*x);
        elif n > 0 then
            F := Gn(n - 1);
            simplify(p/(p - q)*(subs({p = q, q = p}, F) - subs(p = q, F)));
        fi;
    end:
    Zn := proc(n) expand(simplify(subs({p = 1, q = 1}, Gn(n))*(1 - x)^(n + 1))) end:
    seq( coeffs(Zn(n)), n=0..15);  # Kyle Petersen, Jun 02 2024
    # Alternative:
    A205497row := proc(n) local k, j; ifelse(n < 2, 1,
    seq(add((-1)^j * binomial(n + 1, j) * A050446(n, k - j), j = 0..k), k = 0..n-2)) end:  # Peter Luschny, Jun 17 2024
  • Mathematica
    Gn[n_] := Module[{F}, If[n == 0, p*q*x/(1-q*x), If[n > 0, F = Gn[n-1]; Simplify[p/(p-q)*(ReplaceAll[F, {p -> q, q -> p}] - ReplaceAll[F, p -> q])]]]];
    Zn[n_] := Expand[Simplify[ReplaceAll[Gn[n], {p -> 1, q -> 1}]*(1-x)^(n+1)]];
    Table[Rest@CoefficientList[Zn[n], x], {n, 0, 15}] // Flatten (* Jean-François Alcover, Jun 04 2024, after Kyle Petersen *)
  • Python
    from functools import cache
    from math import comb as binomial
    @cache
    def S(n, k):
        return (S(n, k - 1) + sum(S(2 * j, k - 1) * S(n - 1 - 2 * j, k)
                for j in range(1 + (n - 1) // 2)) if k > 0 else 1)
    def A205497(dim):  # returns [row(0), ..., row(dim-1)]
        if dim < 4: return [[1]] * dim
        Y = [[0 for _ in range(n - 2)] for n in range(dim + 1)]
        for n in range(dim + 1):
            for k in range(n - 2):
                for j in range(k + 1):
                    Y[n][k] += (-1)**j * binomial(n, j) * S(n - 1, k - j)
        Y[1] = Y[2] = [1]
        return Y[1::]
    print(A205497(9))  # Peter Luschny, Jun 14 2024

Formula

Conjecture: 5.1. G.f. for column 0 of M is 1/(1-x) (A000012).
Conjecture: 5.2. G.f. for column 1 of M is 1/((1-x)^2*(1-x-x^2)) (A001924).
Conjecture: 5.3. G.f. for column 2 of M is (1 - x^2 - x^3 - x^4 + x^5)/((1-x)^3*(1-x-x^2)^2*(1 - 2*x - x^2 + x^3)) (A205492).
Conjecture: 5.4. G.f. for column 3 of M is (1 + x - 6*x^2 - 15*x^3 + 21*x^4 + 35*x^5 - 13*x^6 - 51*x^7 + 3*x^8 + 21*x^9 + 5*x^10 + x^11 - 5*x^12 - x^13 - x^14)/((1-x)^4*(1-x-x^2)^3*(1 - 2*x - x^2 + x^3)^2*(1 - 2*x - 3*x^2 + x^3 + x^4)) (A205493).
Conjecture: 5.5. G.f. for column 4 of M is (1 + 4*x - 31*x^2 - 67*x^3 + 348*x^4 + 418*x^5 - 1893*x^6 - 1084*x^7 + 4326*x^8 + 4295*x^9 - 7680*x^10 - 9172*x^11 + 9104*x^12 + 11627*x^13 - 5483*x^14 - 10773*x^15 + 1108*x^16 + 7255*x^17 + 315*x^18 - 3085*x^19 - 228*x^20 + 669*x^21 + 102*x^22 - 23*x^23 - 45*x^24 - 16*x^25 + 11*x^26 + 2*x^27 - x^28)/((1-x)^5*(1-x-x^2)^4*(1 - 2*x - x^2 + x^3)^3*(1 - 2*x - 3*x^2 + x^3 + x^4)^2*(1 - 3*x - 3*x^2 + 4*x^3 + x^4 - x^5)) (A205494).

Extensions

Two 1's prepended and new name by Kyle Petersen Jun 02 2024
Edited by Peter Luschny, Jun 02 2024
Showing 1-10 of 23 results. Next