cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 57 results. Next

A038223 Bottom line of 3-wave sequence A038196, also bisection of A006356.

Original entry on oeis.org

1, 6, 31, 157, 793, 4004, 20216, 102069, 515338, 2601899, 13136773, 66326481, 334876920, 1690765888, 8536537209, 43100270734, 217609704247, 1098693409021, 5547212203625, 28007415880892, 141407127676248
Offset: 0

Views

Author

Keywords

Comments

Suggested by the Steinbach heptagon polynomial p^3 - p^2*(1 - p) - 2*p(1 - p)^2 + (1 - p)^3 = (1 - 5 p + 6 p^2 - p^3). - Roger L. Bagula, Sep 20 2006

Programs

  • Mathematica
    p[x_] := 1 - 5 x + 6 x^2 - x^3; q[x_] := ExpandAll[x^3*p[1/x]]; Table[ SeriesCoefficient[ Series[x/q[x], {x, 0, 30}], n], {n, 0, 30}] (* Roger L. Bagula, Sep 20 2006 *)
  • PARI
    k=3; M(k)=matrix(k,k,i,j,min(i,j)); v(k)=vector(k,i,1); a(n)=vecmax(v(k)*M(k)^n)

Formula

Let v(3)=(1, 1, 1), let M(3) be the 3 X 3 matrix m(i, j) =min(i, j), so M(3)=(1, 1, 1)/(1, 2, 2)/(1, 2, 3); then a(n)= Max ( v(3)*M(3)^n) - Benoit Cloitre, Oct 03 2002
G.f.: 1/(1-6x+5x^2-x^3). - Roger L. Bagula and Gary W. Adamson, Sep 20 2006

Extensions

More terms from Benoit Cloitre, Oct 03 2002
Edited by R. J. Mathar, Aug 02 2008

A038213 Top line of 3-wave sequence A038196, also bisection of A006356.

Original entry on oeis.org

1, 3, 14, 70, 353, 1782, 8997, 45425, 229347, 1157954, 5846414, 29518061, 149034250, 752461609, 3799116465, 19181424995, 96845429254, 488964567014, 2468741680809, 12464472679038, 62932092237197, 317738931708801
Offset: 0

Views

Author

Keywords

Examples

			G.f. = 1 + 3*x + 14*x^2 + 70*x^3 + 353*x^4 + 1782*x^5 + 8997*x^6 + 45425*x^7 + ...
		

Crossrefs

Cf. A080937.

Programs

  • PARI
    k=3; M(k)=matrix(k,k,i,j,min(i,j)); v(k)=vector(k,i,1); a(n)=vecmin(v(k)*M(k)^n)
    
  • PARI
    {a(n) = if( n<0, n = -n; polcoeff( (1 - 4*x + 3*x^2) / (1 - 5*x + 6*x^2 - x^3) + x * O(x^n), n), polcoeff( (1 - 3*x + x^2) / (1 - 6*x + 5*x^2 - x^3) + x * O(x^n), n))}; /* Michael Somos, May 04 2012 */

Formula

Let v(3)=(1, 1, 1), let M(3) be the 3 X 3 matrix m(i, j) =min(i, j); then a(n)= min ( v(3)*M(3)^n). - Benoit Cloitre, Oct 03 2002
G.f.: -((1 + (-3 + q)*q)/(-1 + (-3 + q)*(-2 + q)*q)). - Wouter Meeussen, Mar 19 2005
G.f.: (1 - 3*x + x^2) / (1 - 6*x + 5*x^2 - x^3).
a(-n) = A080937(n) for all n in Z. a(n + 2) * a(n) - a(n + 1)^2 = a(-3 - n) for all n in Z. - Michael Somos, May 04 2012

Extensions

More terms from Benoit Cloitre, Oct 03 2002

A179542 Trajectory of 1 under the morphism 1->(1,2,3), 2->(1,2), 3->(1) related to the heptagon and A006356.

Original entry on oeis.org

1, 1, 2, 3, 1, 2, 3, 1, 2, 1, 1, 2, 3, 1, 2, 1, 1, 2, 3, 1, 2, 1, 2, 3, 1, 2, 3, 1, 2, 1, 1, 2, 3, 1, 2, 1, 2, 3, 1, 2, 3, 1, 2, 1, 1, 2, 3, 1, 2, 1, 2, 3, 1, 2, 1, 1, 2, 3, 1, 2, 1, 1, 2, 3, 1, 2, 1, 2, 3, 1, 2, 3, 1, 2, 1, 1, 2, 3, 1, 2, 1, 2, 3, 1, 2, 1, 1, 2, 3, 1, 2, 1, 1, 2, 3, 1, 2, 1, 2, 3, 1, 2, 3, 1, 2
Offset: 0

Views

Author

Gary W. Adamson, Jul 18 2010

Keywords

Comments

Given M = the generating matrix for the heptagon shown in A006356:
[1,1,1; 1,1,0; 1,0,0] take powers of M, extracting top row getting:
(1,1,1), (3,2,1), (6,5,3), (14,11,6), where left and right columns (offset) =
A006356, and middle column = A006054. n-th iterate of the sequence is
composed of A006356(n) terms parsed into a frequency of 1's, 2's, and 3's
matching the 3-termed vectors with appropriate sums.

Examples

			Starting with 1, the next two iterates are:
(1, 2, 3) -> (1, 2, 3, 1, 2, 1) -> (1, 2, 3, 1, 2, 1, 1, 2, 3, 1, 2, 1, 2, 3).
The 3rd iterate has 14 terms composed of six 1's, five 2's, and three 3's; matching the top row of M^3 = (6, 5, 3), sum = 14 = A006356(3).
		

Crossrefs

Programs

  • Mathematica
    NestList[ Flatten[ # /. {1 -> {1, 2, 3}, 2 -> {1, 2}, 3 -> 1}] &, {1}, 5] // Flatten (* Robert G. Wilson v, Jul 23 2010 *)

Extensions

More terms from Robert G. Wilson v, Jul 23 2010

A000045 Fibonacci numbers: F(n) = F(n-1) + F(n-2) with F(0) = 0 and F(1) = 1.

Original entry on oeis.org

0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, 233, 377, 610, 987, 1597, 2584, 4181, 6765, 10946, 17711, 28657, 46368, 75025, 121393, 196418, 317811, 514229, 832040, 1346269, 2178309, 3524578, 5702887, 9227465, 14930352, 24157817, 39088169, 63245986, 102334155
Offset: 0

Views

Author

Keywords

Comments

D. E. Knuth writes: "Before Fibonacci wrote his work, the sequence F_{n} had already been discussed by Indian scholars, who had long been interested in rhythmic patterns that are formed from one-beat and two-beat notes. The number of such rhythms having n beats altogether is F_{n+1}; therefore both Gopāla (before 1135) and Hemachandra (c. 1150) mentioned the numbers 1, 2, 3, 5, 8, 13, 21, ... explicitly." (TAOCP Vol. 1, 2nd ed.) - Peter Luschny, Jan 11 2015
In keeping with historical accounts (see the references by P. Singh and S. Kak), the generalized Fibonacci sequence a, b, a + b, a + 2b, 2a + 3b, 3a + 5b, ... can also be described as the Gopala-Hemachandra numbers H(n) = H(n-1) + H(n-2), with F(n) = H(n) for a = b = 1, and Lucas sequence L(n) = H(n) for a = 2, b = 1. - Lekraj Beedassy, Jan 11 2015
Susantha Goonatilake writes: "[T]his sequence was well known in South Asia and used in the metrical sciences. Its development is attributed in part to Pingala (200 BC), later being associated with Virahanka (circa 700 AD), Gopala (circa 1135), and Hemachandra (circa 1150)—all of whom lived and worked prior to Fibonacci." (Toward a Global Science: Mining Civilizational Knowledge, p. 126) - Russ Cox, Sep 08 2021
Also sometimes called Hemachandra numbers.
Also sometimes called Lamé's sequence.
For a photograph of "Fibonacci"'s 1202 book, see the Leonardo of Pisa link below.
F(n+2) = number of binary sequences of length n that have no consecutive 0's.
F(n+2) = number of subsets of {1,2,...,n} that contain no consecutive integers.
F(n+1) = number of tilings of a 2 X n rectangle by 2 X 1 dominoes.
F(n+1) = number of matchings (i.e., Hosoya index) in a path graph on n vertices: F(5)=5 because the matchings of the path graph on the vertices A, B, C, D are the empty set, {AB}, {BC}, {CD} and {AB, CD}. - Emeric Deutsch, Jun 18 2001
F(n) = number of compositions of n+1 with no part equal to 1. [Cayley, Grimaldi]
Positive terms are the solutions to z = 2*x*y^4 + (x^2)*y^3 - 2*(x^3)*y^2 - y^5 - (x^4)*y + 2*y for x,y >= 0 (Ribenboim, page 193). When x=F(n), y=F(n + 1) and z > 0 then z=F(n + 1).
For Fibonacci search see Knuth, Vol. 3; Horowitz and Sahni; etc.
F(n) is the diagonal sum of the entries in Pascal's triangle at 45 degrees slope. - Amarnath Murthy, Dec 29 2001 (i.e., row sums of A030528, R. J. Mathar, Oct 28 2021)
F(n+1) is the number of perfect matchings in ladder graph L_n = P_2 X P_n. - Sharon Sela (sharonsela(AT)hotmail.com), May 19 2002
F(n+1) = number of (3412,132)-, (3412,213)- and (3412,321)-avoiding involutions in S_n.
This is also the Horadam sequence (0,1,1,1). - Ross La Haye, Aug 18 2003
An INVERT transform of A019590. INVERT([1,1,2,3,5,8,...]) gives A000129. INVERT([1,2,3,5,8,13,21,...]) gives A028859. - Antti Karttunen, Dec 12 2003
Number of meaningful differential operations of the k-th order on the space R^3. - Branko Malesevic, Mar 02 2004
F(n) = number of compositions of n-1 with no part greater than 2. Example: F(4) = 3 because we have 3 = 1+1+1 = 1+2 = 2+1.
F(n) = number of compositions of n into odd parts; e.g., F(6) counts 1+1+1+1+1+1, 1+1+1+3, 1+1+3+1, 1+3+1+1, 1+5, 3+1+1+1, 3+3, 5+1. - Clark Kimberling, Jun 22 2004
F(n) = number of binary words of length n beginning with 0 and having all runlengths odd; e.g., F(6) counts 010101, 010111, 010001, 011101, 011111, 000101, 000111, 000001. - Clark Kimberling, Jun 22 2004
The number of sequences (s(0),s(1),...,s(n)) such that 0 < s(i) < 5, |s(i)-s(i-1)|=1 and s(0)=1 is F(n+1); e.g., F(5+1) = 8 corresponds to 121212, 121232, 121234, 123212, 123232, 123234, 123432, 123434. - Clark Kimberling, Jun 22 2004 [corrected by Neven Juric, Jan 09 2009]
Likewise F(6+1) = 13 corresponds to these thirteen sequences with seven numbers: 1212121, 1212123, 1212321, 1212323, 1212343, 1232121, 1232123, 1232321, 1232323, 1232343, 1234321, 1234323, 1234343. - Neven Juric, Jan 09 2008
A relationship between F(n) and the Mandelbrot set is discussed in the link "Le nombre d'or dans l'ensemble de Mandelbrot" (in French). - Gerald McGarvey, Sep 19 2004
For n > 0, the continued fraction for F(2n-1)*phi = [F(2n); L(2n-1), L(2n-1), L(2n-1), ...] and the continued fraction for F(2n)*phi = [F(2n+1)-1; 1, L(2n)-2, 1, L(2n)-2, ...]. Also true: F(2n)*phi = [F(2n+1); -L(2n), L(2n), -L(2n), L(2n), ...] where L(i) is the i-th Lucas number (A000204). - Clark Kimberling, Nov 28 2004 [corrected by Hieronymus Fischer, Oct 20 2010]
For any nonzero number k, the continued fraction [4,4,...,4,k], which is n 4's and a single k, equals (F(3n) + k*F(3n+3))/(F(3n-3) + k*F(3n)). - Greg Dresden, Aug 07 2019
F(n+1) (for n >= 1) = number of permutations p of 1,2,3,...,n such that |k-p(k)| <= 1 for k=1,2,...,n. (For <= 2 and <= 3, see A002524 and A002526.) - Clark Kimberling, Nov 28 2004
The ratios F(n+1)/F(n) for n > 0 are the convergents to the simple continued fraction expansion of the golden section. - Jonathan Sondow, Dec 19 2004
Lengths of successive words (starting with a) under the substitution: {a -> ab, b -> a}. - Jeroen F.J. Laros, Jan 22 2005
The Fibonacci sequence, like any additive sequence, naturally tends to be geometric with common ratio not a rational power of 10; consequently, for a sufficiently large number of terms, Benford's law of first significant digit (i.e., first digit 1 <= d <= 9 occurring with probability log_10(d+1) - log_10(d)) holds. - Lekraj Beedassy, Apr 29 2005 (See Brown-Duncan, 1970. - N. J. A. Sloane, Feb 12 2017)
F(n+2) = Sum_{k=0..n} binomial(floor((n+k)/2),k), row sums of A046854. - Paul Barry, Mar 11 2003
Number of order ideals of the "zig-zag" poset. See vol. 1, ch. 3, prob. 23 of Stanley. - Mitch Harris, Dec 27 2005
F(n+1)/F(n) is also the Farey fraction sequence (see A097545 for explanation) for the golden ratio, which is the only number whose Farey fractions and continued fractions are the same. - Joshua Zucker, May 08 2006
a(n+2) is the number of paths through 2 plates of glass with n reflections (reflections occurring at plate/plate or plate/air interfaces). Cf. A006356-A006359. - Mitch Harris, Jul 06 2006
F(n+1) equals the number of downsets (i.e., decreasing subsets) of an n-element fence, i.e., an ordered set of height 1 on {1,2,...,n} with 1 > 2 < 3 > 4 < ... n and no other comparabilities. Alternatively, F(n+1) equals the number of subsets A of {1,2,...,n} with the property that, if an odd k is in A, then the adjacent elements of {1,2,...,n} belong to A, i.e., both k - 1 and k + 1 are in A (provided they are in {1,2,...,n}). - Brian Davey, Aug 25 2006
Number of Kekulé structures in polyphenanthrenes. See the paper by Lukovits and Janezic for details. - Parthasarathy Nambi, Aug 22 2006
Inverse: With phi = (sqrt(5) + 1)/2, round(log_phi(sqrt((sqrt(5) a(n) + sqrt(5 a(n)^2 - 4))(sqrt(5) a(n) + sqrt(5 a(n)^2 + 4)))/2)) = n for n >= 3, obtained by rounding the arithmetic mean of the inverses given in A001519 and A001906. - David W. Cantrell (DWCantrell(AT)sigmaxi.net), Feb 19 2007
A result of Jacobi from 1848 states that every symmetric matrix over a p.i.d. is congruent to a triple-diagonal matrix. Consider the maximal number T(n) of summands in the determinant of an n X n triple-diagonal matrix. This is the same as the number of summands in such a determinant in which the main-, sub- and superdiagonal elements are all nonzero. By expanding on the first row we see that the sequence of T(n)'s is the Fibonacci sequence without the initial stammer on the 1's. - Larry Gerstein (gerstein(AT)math.ucsb.edu), Mar 30 2007
Suppose psi=log(phi). We get the representation F(n)=(2/sqrt(5))*sinh(n*psi) if n is even; F(n)=(2/sqrt(5))*cosh(n*psi) if n is odd. There is a similar representation for Lucas numbers (A000032). Many Fibonacci formulas now easily follow from appropriate sinh and cosh formulas. For example: the de Moivre theorem (cosh(x)+sinh(x))^m = cosh(mx)+sinh(mx) produces L(n)^2 + 5F(n)^2 = 2L(2n) and L(n)F(n) = F(2n) (setting x=n*psi and m=2). - Hieronymus Fischer, Apr 18 2007
Inverse: floor(log_phi(sqrt(5)*F(n)) + 1/2) = n, for n > 1. Also for n > 0, floor((1/2)*log_phi(5*F(n)*F(n+1))) = n. Extension valid for integer n, except n=0,-1: floor((1/2)*sign(F(n)*F(n+1))*log_phi|5*F(n)*F(n+1)|) = n (where sign(x) = sign of x). - Hieronymus Fischer, May 02 2007
F(n+2) = the number of Khalimsky-continuous functions with a two-point codomain. - Shiva Samieinia (shiva(AT)math.su.se), Oct 04 2007
This is a_1(n) in the Doroslovacki reference.
Let phi = A001622 then phi^n = (1/phi)*a(n) + a(n+1). - Gary W. Adamson, Dec 15 2007
The sequence of first differences, F(n+1)-F(n), is essentially the same sequence: 1, 0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, ... - Colm Mulcahy, Mar 03 2008
Equals row sums of triangle A144152. - Gary W. Adamson, Sep 12 2008
Except for the initial term, the numerator of the convergents to the recursion x = 1/(x+1). - Cino Hilliard, Sep 15 2008
F(n) is the number of possible binary sequences of length n that obey the sequential construction rule: if last symbol is 0, add the complement (1); else add 0 or 1. Here 0,1 are metasymbols for any 2-valued symbol set. This rule has obvious similarities to JFJ Laros's rule, but is based on addition rather than substitution and creates a tree rather than a single sequence. - Ross Drewe, Oct 05 2008
F(n) = Product_{k=1..(n-1)/2} (1 + 4*cos^2 k*Pi/n), where terms = roots to the Fibonacci product polynomials, A152063. - Gary W. Adamson, Nov 22 2008
Fp == 5^((p-1)/2) mod p, p = prime [Schroeder, p. 90]. - Gary W. Adamson & Alexander R. Povolotsky, Feb 21 2009
A000032(n)^2 - 5*F(n)^2 = 4*(-1)^n. - Gary W. Adamson, Mar 11 2009
Output of Kasteleyn's formula for the number of perfect matchings of an m X n grid specializes to the Fibonacci sequence for m=2. - Sarah-Marie Belcastro, Jul 04 2009
(F(n),F(n+4)) satisfies the Diophantine equation: X^2 + Y^2 - 7XY = 9*(-1)^n. - Mohamed Bouhamida, Sep 06 2009
(F(n),F(n+2)) satisfies the Diophantine equation: X^2 + Y^2 - 3XY = (-1)^n. - Mohamed Bouhamida, Sep 08 2009
a(n+2) = A083662(A131577(n)). - Reinhard Zumkeller, Sep 26 2009
Difference between number of closed walks of length n+1 from a node on a pentagon and number of walks of length n+1 between two adjacent nodes on a pentagon. - Henry Bottomley, Feb 10 2010
F(n+1) = number of Motzkin paths of length n having exactly one weak ascent. A Motzkin path of length n is a lattice path from (0,0) to (n,0) consisting of U=(1,1), D=(1,-1) and H=(1,0) steps and never going below the x-axis. A weak ascent in a Motzkin path is a maximal sequence of consecutive U and H steps. Example: a(5)=5 because we have (HHHH), (HHU)D, (HUH)D, (UHH)D, and (UU)DD (the unique weak ascent is shown between parentheses; see A114690). - Emeric Deutsch, Mar 11 2010
(F(n-1) + F(n+1))^2 - 5*F(n-2)*F(n+2) = 9*(-1)^n. - Mohamed Bouhamida, Mar 31 2010
From the Pinter and Ziegler reference's abstract: authors "show that essentially the Fibonacci sequence is the unique binary recurrence which contains infinitely many three-term arithmetic progressions. A criterion for general linear recurrences having infinitely many three-term arithmetic progressions is also given." - Jonathan Vos Post, May 22 2010
F(n+1) = number of paths of length n starting at initial node on the path graph P_4. - Johannes W. Meijer, May 27 2010
F(k) = number of cyclotomic polynomials in denominator of generating function for number of ways to place k nonattacking queens on an n X n board. - Vaclav Kotesovec, Jun 07 2010
As n->oo, (a(n)/a(n-1) - a(n-1)/a(n)) tends to 1.0. Example: a(12)/a(11) - a(11)/a(12) = 144/89 - 89/144 = 0.99992197.... - Gary W. Adamson, Jul 16 2010
From Hieronymus Fischer, Oct 20 2010: (Start)
Fibonacci numbers are those numbers m such that m*phi is closer to an integer than k*phi for all k, 1 <= k < m. More formally: a(0)=0, a(1)=1, a(2)=1, a(n+1) = minimal m > a(n) such that m*phi is closer to an integer than a(n)*phi.
For all numbers 1 <= k < F(n), the inequality |k*phi-round(k*phi)| > |F(n)*phi-round(F(n)*phi)| holds.
F(n)*phi - round(F(n)*phi) = -((-phi)^(-n)), for n > 1.
Fract(1/2 + F(n)*phi) = 1/2 -(-phi)^(-n), for n > 1.
Fract(F(n)*phi) = (1/2)*(1 + (-1)^n) - (-phi)^(-n), n > 1.
Inverse: n = -log_phi |1/2 - fract(1/2 + F(n)*phi)|.
(End)
F(A001177(n)*k) mod n = 0, for any integer k. - Gary Detlefs, Nov 27 2010
F(n+k)^2 - F(n)^2 = F(k)*F(2n+k), for even k. - Gary Detlefs, Dec 04 2010
F(n+k)^2 + F(n)^2 = F(k)*F(2n+k), for odd k. - Gary Detlefs, Dec 04 2010
F(n) = round(phi*F(n-1)) for n > 1. - Joseph P. Shoulak, Jan 13 2012
For n > 0: a(n) = length of n-th row in Wythoff array A003603. - Reinhard Zumkeller, Jan 26 2012
From Bridget Tenner, Feb 22 2012: (Start)
The number of free permutations of [n].
The number of permutations of [n] for which s_k in supp(w) implies s_{k+-1} not in supp(w).
The number of permutations of [n] in which every decomposition into length(w) reflections is actually composed of simple reflections. (End)
The sequence F(n+1)^(1/n) is increasing. The sequence F(n+2)^(1/n) is decreasing. - Thomas Ordowski, Apr 19 2012
Two conjectures: For n > 1, F(n+2)^2 mod F(n+1)^2 = F(n)*F(n+1) - (-1)^n. For n > 0, (F(2n) + F(2n+2))^2 = F(4n+3) + Sum_{k = 2..2n} F(2k). - Alex Ratushnyak, May 06 2012
From Ravi Kumar Davala, Jan 30 2014: (Start)
Proof of Ratushnyak's first conjecture: For n > 1, F(n+2)^2 - F(n)*F(n+1) + (-1)^n = 2*F(n+1)^2.
Consider: F(n+2)^2 - F(n)*F(n+1) - 2*F(n+1)^2
= F(n+2)^2 - F(n+1)^2 - F(n+1)^2 - F(n)*F(n+1)
= (F(n+2) + F(n+1))*(F(n+2) - F(n+1)) - F(n+1)*(F(n+1) + F(n))
= F(n+3)*F(n) - F(n+1)*F(n+2) = -(-1)^n.
Proof of second conjecture: L(n) stands for Lucas number sequence from A000032.
Consider the fact that
L(2n+1)^2 = L(4n+2) - 2
(F(2n) + F(2n+2))^2 = F(4n+1) + F(4n+3) - 2
(F(2n) + F(2n+2))^2 = (Sum_{k = 2..2n} F(2k)) + F(4n+3).
(End)
The relationship: INVERT transform of (1,1,0,0,0,...) = (1, 2, 3, 5, 8, ...), while the INVERT transform of (1,0,1,0,1,0,1,...) = (1, 1, 2, 3, 5, 8, ...) is equivalent to: The numbers of compositions using parts 1 and 2 is equivalent to the numbers of compositions using parts == 1 (mod 2) (i.e., the odd integers). Generally, the numbers of compositions using parts 1 and k is equivalent to the numbers of compositions of (n+1) using parts 1 mod k. Cf. A000930 for k = 3 and A003269 for k = 4. Example: for k = 2, n = 4 we have the compositions (22; 211, 121; 112; 1111) = 5; but using parts 1 and 3 we have for n = 5: (311, 131, 113, 11111, 5) = 5. - Gary W. Adamson, Jul 05 2012
The sequence F(n) is the binomial transformation of the alternating sequence (-1)^(n-1)*F(n), whereas the sequence F(n+1) is the binomial transformation of the alternating sequence (-1)^n*F(n-1). Both of these facts follow easily from the equalities a(n;1)=F(n+1) and b(n;1)=F(n) where a(n;d) and b(n;d) are so-called "delta-Fibonacci" numbers as defined in comments to A014445 (see also the papers of Witula et al.). - Roman Witula, Jul 24 2012
F(n) is the number of different (n-1)-digit binary numbers such that all substrings of length > 1 have at least one digit equal to 1. Example: for n = 5 there are 8 binary numbers with n - 1 = 4 digits (1000, 1001, 1010, 1011, 1100, 1101, 1110, 1111), only the F(n) = 5 numbers 1010, 1011, 1101, 1110 and 1111 have the desired property. - Hieronymus Fischer, Nov 30 2012
For positive n, F(n+1) equals the determinant of the n X n tridiagonal matrix with 1's along the main diagonal, i's along the superdiagonal and along the subdiagonal where i = sqrt(-1). Example: Det([1,i,0,0; i,1,i,0; 0,i,1,i; 0,0,i,1]) = F(4+1) = 5. - Philippe Deléham, Feb 24 2013
For n >= 1, number of compositions of n where there is a drop between every second pair of parts, starting with the first and second part; see example. Also, a(n+1) is the number of compositions where there is a drop between every second pair of parts, starting with the second and third part; see example. - Joerg Arndt, May 21 2013 [see the Hopkins/Tangboonduangjit reference for a proof, see also the Checa reference for alternative proofs and statistics]
Central terms of triangles in A162741 and A208245, n > 0. - Reinhard Zumkeller, Jul 28 2013
For n >= 4, F(n-1) is the number of simple permutations in the geometric grid class given in A226433. - Jay Pantone, Sep 08 2013
a(n) are the pentagon (not pentagonal) numbers because the algebraic degree 2 number rho(5) = 2*cos(Pi/5) = phi (golden section), the length ratio diagonal/side in a pentagon, has minimal polynomial C(5,x) = x^2 - x - 1 (see A187360, n=5), hence rho(5)^n = a(n-1)*1 + a(n)*rho(5), n >= 0, in the power basis of the algebraic number field Q(rho(5)). One needs a(-1) = 1 here. See also the P. Steinbach reference under A049310. - Wolfdieter Lang, Oct 01 2013
A010056(a(n)) = 1. - Reinhard Zumkeller, Oct 10 2013
Define F(-n) to be F(n) for n odd and -F(n) for n even. Then for all n and k, F(n+2k)^2 - F(n)^2 = F(n+k)*( F(n+3k) - F(n-k) ). - Charlie Marion, Dec 20 2013
( F(n), F(n+2k) ) satisfies the Diophantine equation: X^2 + Y^2 - L(2k)*X*Y = F(4k)^2*(-1)^n. This generalizes Bouhamida's comments dated Sep 06 2009 and Sep 08 2009. - Charlie Marion, Jan 07 2014
For any prime p there is an infinite periodic subsequence within F(n) divisible by p, that begins at index n = 0 with value 0, and its first nonzero term at n = A001602(i), and period k = A001602(i). Also see A236479. - Richard R. Forberg, Jan 26 2014
Range of row n of the circular Pascal array of order 5. - Shaun V. Ault, May 30 2014 [orig. Kicey-Klimko 2011, and observations by Glen Whitehead; more general work found in Ault-Kicey 2014]
Nonnegative range of the quintic polynomial 2*y - y^5 + 2*x*y^4 + x^2*y^3 - 2*x^3*y^2 - x^4*y with x, y >= 0, see Jones 1975. - Charles R Greathouse IV, Jun 01 2014
The expression round(1/(F(k+1)/F(n) + F(k)/F(n+1))), for n > 0, yields a Fibonacci sequence with k-1 leading zeros (with rounding 0.5 to 0). - Richard R. Forberg, Aug 04 2014
Conjecture: For n > 0, F(n) is the number of all admissible residue classes for which specific finite subsequences of the Collatz 3n + 1 function consists of n+2 terms. This has been verified for 0 < n < 51. For details see Links. - Mike Winkler, Oct 03 2014
a(4)=3 and a(6)=8 are the only Fibonacci numbers that are of the form prime+1. - Emmanuel Vantieghem, Oct 02 2014
a(1)=1=a(2), a(3)=2 are the only Fibonacci numbers that are of the form prime-1. - Emmanuel Vantieghem, Jun 07 2015
Any consecutive pair (m, k) of the Fibonacci sequence a(n) illustrates a fair equivalence between m miles and k kilometers. For instance, 8 miles ~ 13 km; 13 miles ~ 21 km. - Lekraj Beedassy, Oct 06 2014
a(n+1) counts closed walks on K_2, containing one loop on the other vertex. Equivalently the (1,1)entry of A^(n+1) where the adjacency matrix of digraph is A=(0,1; 1,1). - _David Neil McGrath, Oct 29 2014
a(n-1) counts closed walks on the graph G(1-vertex;l-loop,2-loop). - David Neil McGrath, Nov 26 2014
From Tom Copeland, Nov 02 2014: (Start)
Let P(x) = x/(1+x) with comp. inverse Pinv(x) = x/(1-x) = -P[-x], and C(x) = [1-sqrt(1-4x)]/2, an o.g.f. for the shifted Catalan numbers A000108, with inverse Cinv(x) = x * (1-x).
Fin(x) = P[C(x)] = C(x)/[1 + C(x)] is an o.g.f. for the Fine numbers, A000957 with inverse Fin^(-1)(x) = Cinv[Pinv(x)] = Cinv[-P(-x)].
Mot(x) = C[P(x)] = C[-Pinv(-x)] gives an o.g.f. for shifted A005043, the Motzkin or Riordan numbers with comp. inverse Mot^(-1)(x) = Pinv[Cinv(x)] = (x - x^2) / (1 - x + x^2) (cf. A057078).
BTC(x) = C[Pinv(x)] gives A007317, a binomial transform of the Catalan numbers, with BTC^(-1)(x) = P[Cinv(x)].
Fib(x) = -Fin[Cinv(Cinv(-x))] = -P[Cinv(-x)] = x + 2 x^2 + 3 x^3 + 5 x^4 + ... = (x+x^2)/[1-x-x^2] is an o.g.f. for the shifted Fibonacci sequence A000045, so the comp. inverse is Fib^(-1)(x) = -C[Pinv(-x)] = -BTC(-x) and Fib(x) = -BTC^(-1)(-x).
Generalizing to P(x,t) = x /(1 + t*x) and Pinv(x,t) = x /(1 - t*x) = -P(-x,t) gives other relations to lattice paths, such as the o.g.f. for A091867, C[P[x,1-t]], and that for A104597, Pinv[Cinv(x),t+1].
(End)
F(n+1) equals the number of binary words of length n avoiding runs of zeros of odd lengths. - Milan Janjic, Jan 28 2015
From Russell Jay Hendel, Apr 12 2015: (Start)
We prove Conjecture 1 of Rashid listed in the Formula section.
We use the following notation: F(n)=A000045(n), the Fibonacci numbers, and L(n) = A000032(n), the Lucas numbers. The fundamental Fibonacci-Lucas recursion asserts that G(n) = G(n-1) + G(n-2), with "L" or "F" replacing "G".
We need the following prerequisites which we label (A), (B), (C), (D). The prerequisites are formulas in the Koshy book listed in the References section. (A) F(m-1) + F(m+1) = L(m) (Koshy, p. 97, #32), (B) L(2m) + 2*(-1)^m = L(m)^2 (Koshy p. 97, #41), (C) F(m+k)*F(m-k) = (-1)^n*F(k)^2 (Koshy, p. 113, #24, Tagiuri's identity), and (D) F(n)^2 + F(n+1)^2 = F(2n+1) (Koshy, p. 97, #30).
We must also prove (E), L(n+2)*F(n-1) = F(2n+1)+2*(-1)^n. To prove (E), first note that by (A), proof of (E) is equivalent to proving that F(n+1)*F(n-1) + F(n+3)*F(n-1) = F(2n+1) + 2*(-1)^n. But by (C) with k=1, we have F(n+1)*F(n-1) = F(n)^2 + (-1)^n. Applying (C) again with k=2 and m=n+1, we have F(n+3)*F(n-1) = F(n+1) + (-1)^n. Adding these two applications of (C) together and using (D) we have F(n+1)*F(n-1) + F(n+3)*F(n-1) = F(n)^2 + F(n+1)^2 + 2*(-1)^n = F(2n+1) + 2(-1)^n, completing the proof of (E).
We now prove Conjecture 1. By (A) and the Fibonacci-Lucas recursion, we have F(2n+1) + F(2n+2) + F(2n+3) + F(2n+4) = (F(2n+1) + F(2n+3)) + (F(2n+2) + F(2n+4)) = L(2n+2) +L(2n+3) = L(2n+4). But then by (B), with m=2n+4, we have sqrt(L(2n+4) + 2(-1)^n) = L(n+2). Finally by (E), we have L(n+2)*F(n-1) = F(2n+1) + 2*(-1)^n. Dividing both sides by F(n-1), we have (F(2n+1) + 2*(-1)^n)/F(n-1) = L(n+2) = sqrt(F(2n+1) + F(2n+2) + F(2n+3) + F(2n+4) + 2(-1)^n), as required.
(End)
In Fibonacci's Liber Abaci the rabbit problem appears in the translation of L. E. Sigler on pp. 404-405, and a remark [27] on p. 637. - Wolfdieter Lang, Apr 17 2015
a(n) counts partially ordered partitions of (n-1) into parts 1,2,3 where only the order of adjacent 1's and 2's are unimportant. (See example.) - David Neil McGrath, Jul 27 2015
F(n) divides F(n*k). Proved by Marjorie Bicknell and Verner E Hoggatt Jr. - Juhani Heino, Aug 24 2015
F(n) is the number of UDU-equivalence classes of ballot paths of length n. Two ballot paths of length n with steps U = (1,1), D = (1,-1) are UDU-equivalent whenever the positions of UDU are the same in both paths. - Kostas Manes, Aug 25 2015
Cassini's identity F(2n+1) * F(2n+3) = F(2n+2)^2 + 1 is the basis for a geometrical paradox (or dissection fallacy) in A262342. - Jonathan Sondow, Oct 23 2015
For n >= 4, F(n) is the number of up-down words on alphabet {1,2,3} of length n-2. - Ran Pan, Nov 23 2015
F(n+2) is the number of terms in p(n), where p(n)/q(n) is the n-th convergent of the formal infinite continued fraction [a(0),a(1),...]; e.g., p(3) = a(0)a(1)a(2)a(3) + a(0)a(1) + a(0)a(3) + a(2)a(3) + 1 has F(5) terms. Also, F(n+1) is the number of terms in q(n). - Clark Kimberling, Dec 23 2015
F(n+1) (for n >= 1) is the permanent of an n X n matrix M with M(i,j)=1 if |i-j| <= 1 and 0 otherwise. - Dmitry Efimov, Jan 08 2016
A trapezoid has three sides of lengths in order F(n), F(n+2), F(n). For increasing n a very close approximation to the maximum area will have the fourth side equal to 2*F(n+1). For a trapezoid with lengths of sides in order F(n+2), F(n), F(n+2), the fourth side will be F(n+3). - J. M. Bergot, Mar 17 2016
(1) Join two triangles with lengths of sides L(n), F(n+3), L(n+2) and F(n+2), L(n+1), L(n+2) (where L(n)=A000032(n)) along the common side of length L(n+2) to create an irregular quadrilateral. Its area is approximately 5*F(2*n-1) - (F(2*n-7) - F(2*n-13))/5. (2) Join two triangles with lengths of sides L(n), F(n+2), F(n+3) and L(n+1), F(n+1), F(n+3) along the common side F(n+3) to form an irregular quadrilateral. Its area is approximately 4*F(2*n-1) - 2*(F(2*n-7) + F(2*n-18)). - J. M. Bergot, Apr 06 2016
From Clark Kimberling, Jun 13 2016: (Start)
Let T* be the infinite tree with root 0 generated by these rules: if p is in T*, then p+1 is in T* and x*p is in T*.
Let g(n) be the set of nodes in the n-th generation, so that g(0) = {0}, g(1) = {1}, g(2) = {2, x}, g(3) = {3, 2x, x+1, x^2}, etc.
Let T(r) be the tree obtained by substituting r for x.
If a positive integer N is not a square and r = sqrt(N), then the number of (not necessarily distinct) integers in g(n) is A000045(n), for n >= 1. See A274142. (End)
Consider the partitions of n, with all summands initially listed in nonincreasing order. Freeze all the 1's in place and then allow all the other summands to change their order, without displacing any of the 1's. The resulting number of arrangements is a(n+1). - Gregory L. Simay, Jun 14 2016
Limit of the matrix power M^k shown in A163733, Sep 14 2016, as k->infinity results in a single column vector equal to the Fibonacci sequence. - Gary W. Adamson, Sep 19 2016
F(n) and Lucas numbers L(n), being related by the formulas F(n) = (F(n-1) + L(n-1))/2 and L(n) = 2 F(n+1) - F(n), are a typical pair of "autosequences" (see the link to OEIS Wiki). - Jean-François Alcover, Jun 10 2017
Also the number of independent vertex sets and vertex covers in the (n-2)-path graph. - Eric W. Weisstein, Sep 22 2017
Shifted numbers of {UD, DU, FD, DF}-equivalence classes of Łukasiewicz paths. Łukasiewicz paths are P-equivalent iff the positions of pattern P are identical in these paths. - Sergey Kirgizov, Apr 08 2018
For n > 0, F(n) = the number of Markov equivalence classes with skeleton the path on n nodes. See Theorem 2.1 in the article by A. Radhakrishnan et al. below. - Liam Solus, Aug 23 2018
For n >= 2, also: number of terms in A032858 (every other base-3 digit is strictly smaller than its neighbors) with n-2 digits in base 3. - M. F. Hasler, Oct 05 2018
F(n+1) is the number of fixed points of the Foata transformation on S_n. - Kevin Long, Oct 17 2018
F(n+2) is the dimension of the Hecke algebra of type A_n with independent parameters (0,1,0,1,...) or (1,0,1,0,...). See Corollary 1.5 in the link "Hecke algebras with independent parameters". - Jia Huang, Jan 20 2019
The sequence is the second INVERT transform of (1, -1, 2, -3, 5, -8, 13, ...) and is the first sequence in an infinite set of successive INVERT transforms generated from (1, 0, 1, 0, 1, ...). Refer to the array shown in A073133. - Gary W. Adamson, Jul 16 2019
From Kai Wang, Dec 16 2019: (Start)
F(n*k)/F(k) = Sum_{i=0..n-1; j=0..n-1; i+2*j=n-1} (-1)^(j*(k-1))*L(k)^i*((i+j)!/(i!*j!)).
F((2*m+1)*k)/F(k) = Sum_{i=0..m-1} (-1)^(i*k)*L((2*m-2*i)*k) + (-1)^(m*k).
F(2*m*k)/F(k) = Sum_{i=0..m-1} (-1)^(i*k)*L((2*m-2*i-1)*k).
F(m+s)*F(n+r) - F(m+r)*F(n+s) = (-1)^(n+s)*F(m-n)*F(r-s).
F(m+r)*F(n+s) + F(m+s)*F(n+r) = (2*L(m+n+r+s) - (-1)^(n+s)*L(m-n)*L(r-s))/5.
L(m+r)*L(n+s) - 5*F(m+s)*F(n+r) = (-1)^(n+s)*L(m-n)*L(r-s).
L(m+r)*L(n+s) + 5*F(m+s)*F(n+r) = 2*L(m+n+r+s) + (-1)^(n+s)*5*F(m-n)*F(r-s).
L(m+r)*L(n+s) - L(m+s)*L(n+r) = (-1)^(n+s)*5*F(m-n)*F(r-s). (End)
F(n+1) is the number of permutations in S_n whose principal order ideals in the weak order are Boolean lattices. - Bridget Tenner, Jan 16 2020
F(n+1) is the number of permutations w in S_n that form Boolean intervals [s, w] in the weak order for every simple reflection s in the support of w. - Bridget Tenner, Jan 16 2020
F(n+1) is the number of subsets of {1,2,.,.,n} in which all differences between successive elements of subsets are odd. For example, for n = 6, F(7) = 13 and the 13 subsets are {6}, {1,6}, {3,6}, {5,6}, {2,3,6}, {2,5,6}, {4,5,6}, {1,2,3,6}, {1,2,5,6}, {1,4,5,6}, {3,4,5,6}, {2,3,4,5,6}, {1,2,3,4,5,6}. For even differences between elements see Comment in A016116. - Enrique Navarrete, Jul 01 2020
F(n) is the number of subsets of {1,2,...,n} in which the smallest element of the subset equals the size of the subset (this type of subset is sometimes called extraordinary). For example, F(6) = 8 and the subsets are {1}, {2,3}, {2,4}, {2,5}, {3,4,5}, {2,6}, {3,4,6}, {3,5,6}. It is easy to see that these subsets follow the Fibonacci recursion F(n) = F(n-1) + F(n-2) since we get F(n) such subsets by keeping all F(n-1) subsets from the previous stage (in the example, the F(5)=5 subsets that don't include 6), and by adding one to all elements and appending an additional element n to each subset in F(n-2) subsets (in the example, by applying this to the F(4)=3 subsets {1}, {2,3}, {2,4} we obtain {2,6}, {3,4,6}, {3,5,6}). - Enrique Navarrete, Sep 28 2020
Named "série de Fibonacci" by Lucas (1877) after the Italian mathematician Fibonacci (Leonardo Bonacci, c. 1170 - c. 1240/50). In 1876 he named the sequence "série de Lamé" after the French mathematician Gabriel Lamé (1795 - 1870). - Amiram Eldar, Apr 16 2021
F(n) is the number of edge coverings of the path with n edges. - M. Farrokhi D. G., Sep 30 2021
LCM(F(m), F(n)) is a Fibonacci number if and only if either F(m) divides F(n) or F(n) divides F(m). - M. Farrokhi D. G., Sep 30 2021
Every nonunit positive rational number has at most one representation as the quotient of two Fibonacci numbers. - M. Farrokhi D. G., Sep 30 2021
The infinite sum F(n)/10^(n-1) for all natural numbers n is equal to 100/89. More generally, the sum of F(n)/(k^(n-1)) for all natural numbers n is equal to k^2/(k^2-k-1). Jonatan Djurachkovitch, Dec 31 2023
For n >= 1, number of compositions (c(1),c(2),...,c(k)) of n where c(1), c(3), c(5), ... are 1. To obtain such compositions K(n) of length n increase all parts c(2) by one in all of K(n-1) and prepend two parts 1 in all of K(n-2). - Joerg Arndt, Jan 05 2024
Cohn (1964) proved that a(12) = 12^2 is the only square in the sequence greater than a(1) = 1. - M. F. Hasler, Dec 18 2024
Product_{i=n-2..n+2} F(i) = F(n)^5 - F(n). For example, (F(4)F(5)F(6)F(7)F(8))=(3 * 5 * 8 * 13 * 21) = 8^5 - 8. - Jules Beauchamp, Apr 28 2025
F(n) is even iff n is a multiple of 3. - Stefano Spezia, Jul 06 2025

Examples

			For x = 0,1,2,3,4, x=1/(x+1) = 1, 1/2, 2/3, 3/5, 5/8. These fractions have numerators 1,1,2,3,5, which are the 2nd to 6th terms of the sequence. - _Cino Hilliard_, Sep 15 2008
From _Joerg Arndt_, May 21 2013: (Start)
There are a(7)=13 compositions of 7 where there is a drop between every second pair of parts, starting with the first and second part:
01:  [ 2 1 2 1 1 ]
02:  [ 2 1 3 1 ]
03:  [ 2 1 4 ]
04:  [ 3 1 2 1 ]
05:  [ 3 1 3 ]
06:  [ 3 2 2 ]
07:  [ 4 1 2 ]
08:  [ 4 2 1 ]
09:  [ 4 3 ]
10:  [ 5 1 1 ]
11:  [ 5 2 ]
12:  [ 6 1 ]
13:  [ 7 ]
There are abs(a(6+1))=13 compositions of 6 where there is no rise between every second pair of parts, starting with the second and third part:
01:  [ 1 2 1 2 ]
02:  [ 1 3 1 1 ]
03:  [ 1 3 2 ]
04:  [ 1 4 1 ]
05:  [ 1 5 ]
06:  [ 2 2 1 1 ]
07:  [ 2 3 1 ]
08:  [ 2 4 ]
09:  [ 3 2 1 ]
10:  [ 3 3 ]
11:  [ 4 2 ]
12:  [ 5 1 ]
13:  [ 6 ]
(End)
Partially ordered partitions of (n-1) into parts 1,2,3 where only the order of the adjacent 1's and 2's are unimportant. E.g., a(8)=21. These are (331),(313),(133),(322),(232),(223),(3211),(2311),(1321),(2131),(1132),(2113),(31111),(13111),(11311),(11131),(11113),(2221),(22111),(211111),(1111111). - _David Neil McGrath_, Jul 25 2015
Consider the partitions of 7 with summands initially listed in nonincreasing order. Keep the 1's frozen in position (indicated by "[]") and then allow the other summands to otherwise vary their order: 7; 6,[1]; 5,2; 2,5; 4,3; 3,4; 5,[1,1], 4,2,[1]; 2,4,[1]; 3,3,[1]; 3,3,2; 3,2,3; 2,3,3; 4,[1,1,1]; 3,2,[1,1]; 2,3,[1,1]; 2,2,2,[1]; 3,[1,1,1,1]; 2,2,[1,1,1]; 2,[1,1,1,1,1]; [1,1,1,1,1,1,1]. There are 21 = a(7+1) arrangements in all. - _Gregory L. Simay_, Jun 14 2016
		

References

  • Mohammad K. Azarian, The Generating Function for the Fibonacci Sequence, Missouri Journal of Mathematical Sciences, Vol. 2, No. 2, Spring 1990, pp. 78-79. Zentralblatt MATH, Zbl 1097.11516.
  • Mohammad K. Azarian, A Generalization of the Climbing Stairs Problem II, Missouri Journal of Mathematical Sciences, Vol. 16, No. 1, Winter 2004, pp. 12-17.
  • P. Bachmann, Niedere Zahlentheorie (1902, 1910), reprinted Chelsea, NY, 1968, vol. 2, p. 70.
  • R. B. Banks, Slicing Pizzas, Racing Turtles and Further Adventures in Applied Mathematics, Princeton Univ. Press, 1999. See p. 84.
  • A. T. Benjamin and J. J. Quinn, Proofs that really count: the art of combinatorial proof, M.A.A. 2003, id. 4.
  • Marjorie Bicknell and Verner E Hoggatt, Fibonacci's Problem Book, Fibonacci Association, San Jose, Calif., 1974.
  • Miklos Bona, editor, Handbook of Enumerative Combinatorics, CRC Press, 2015, pages 24 (Ex. 18), 489, 541.
  • A. Cayley, Theorems in Trigonometry and on Partitions, Messenger of Mathematics, 5 (1876), pp. 164, 188 = Mathematical Papers Vol. 10, n. 634, p. 16.
  • John H. Conway and Richard K. Guy, The Book of Numbers, New York: Springer-Verlag, 1996. See pp. 84, 111-124, 202-203.
  • B. A. Davey and H. A. Priestley, Introduction to Lattices and Order (2nd edition), CUP, 2002. (See Exercise 1.15.)
  • B. Davis, 'The law of first digits' in 'Science Today' (subsequently renamed '2001') March 1980 p. 55, Times of India, Mumbai.
  • S. R. Finch, Mathematical Constants, Cambridge, 2003, Section 1.2.
  • R. P. Grimaldi, Compositions without the summand 1, Proceedings Thirty-second Southeastern International Conference on Combinatorics, Graph Theory and Computing (Baton Rouge, LA, 2001). Congr. Numer. 152 (2001), 33-43.
  • Jan Gullberg, Mathematics from the Birth of Numbers, W. W. Norton & Co., NY & London, 1997, §8.5 The Fibonacci and Related Sequences, pp. 286-288.
  • H. Halberstam and K. F. Roth, Sequences, Oxford, 1966; see Appendix.
  • S. Happersett, "Mathematical meditations", Journal of Mathematics and the Arts, 1 (2007), 29 - 33.
  • G. H. Hardy and E. M. Wright, An Introduction to the Theory of Numbers. 3rd ed., Oxford Univ. Press, 1954; see esp. p. 148.
  • V. E. Hoggatt, Jr., Fibonacci and Lucas Numbers. Houghton, Boston, MA, 1969.
  • E. Horowitz and S. Sahni, Fundamentals of Data Structures, Computer Science Press, 1976; p. 338.
  • M. Kauers and P. Paule, The Concrete Tetrahedron, Springer 2011, p. 63.
  • C. Kicey and K. Klimko, Some geometry of Pascal's triangle, Pi Mu Epsilon Journal, 13(4):229-245 (2011).
  • D. E. Knuth, The Art of Computer Programming. Addison-Wesley, Reading, MA, Vol. 1, p. 78; Vol. 3, Section 6.2.1.
  • Thomas Koshy, "Fibonacci and Lucas Numbers with Applications", John Wiley and Sons, 2001.
  • Leonardo of Pisa [Leonardo Pisano], Liber Abaci [The Book of Calculation], 1202.
  • D. Litchfield, D. Goldenheim and C. H. Dietrich, Euclid, Fibonacci and Sketchpad, Math. Teacher, 90 (1997).
  • Lukovits et al., Nanotubes: Number of Kekulé structures and aromaticity, J. Chem. Inf. Comput. Sci, (2003), vol. 43, 609-614. See eq. 2 on page 610.
  • I. Lukovits and D. Janezic, "Enumeration of conjugated circuits in nanotubes", J. Chem. Inf. Comput. Sci., vol. 44, 410-414 (2004). See Table 1, second column.
  • B. Malesevic: Some combinatorial aspects of differential operation composition on the space R^n, Univ. Beograd, Publ. Elektrotehn. Fak., Ser. Mat. 9 (1998), 29-33.
  • G. Mantel, Resten van wederkeerige Reeksen, Nieuw Archief v. Wiskunde, 2nd series, I (1894), 172-184.
  • C. N. Menhinick, The Fibonacci Resonance and other new Golden Ratio discoveries, Onperson, (2015), pages 200-206.
  • S. Mneimneh, Fibonacci in The Curriculum: Not Just a Bad Recurrence, in Proceeding SIGCSE '15 Proceedings of the 46th ACM Technical Symposium on Computer Science Education, Pages 253-258.
  • Hilary I. Okagbue, Muminu O. Adamu, Sheila A. Bishop, Abiodun A. Opanuga, Digit and Iterative Digit Sum of Fibonacci numbers, their identities and powers, International Journal of Applied Engineering Research ISSN 0973-4562 Volume 11, Number 6 (2016) pp 4623-4627.
  • Clifford A. Pickover, A Passion for Mathematics, Wiley, 2005; see p. 49.
  • Clifford A. Pickover, The Math Book, From Pythagoras to the 57th Dimension, 250 Milestones in the History of Mathematics, Sterling Publ., NY, 2009, page 274.
  • Alfred S. Posamentier, Math Charmers, Tantalizing Tidbits for the Mind, Prometheus Books, NY, 2003, pages 55-58, 255-260.
  • Alfred S. Posamentier and I. Lehmann, The Fabulous Fibonacci Numbers, Prometheus Books, Amherst, NY 2007.
  • Paulo Ribenboim, The New Book of Prime Number Records, Springer, 1996.
  • Paulo Ribenboim, My Numbers, My Friends: Popular Lectures on Number Theory, Springer-Verlag, NY, 2000, p. 3.
  • Paulo Ribenboim, The Little Book of Bigger Primes, Springer-Verlag NY 2004. See pp. 45, 59.
  • J. Riordan, An Introduction to Combinatorial Analysis, Princeton University Press, Princeton, NJ, 1978.
  • A. M. Robert, A Course in p-adic Analysis, Springer-Verlag, 2000; p. 213.
  • J. Roberts, Lure of the Integers, Math. Assoc. America, 1992, p. 288.
  • Manfred R. Schroeder, "Number Theory in Science and Communication", 5th ed., Springer-Verlag, 2009
  • L. E. Sigler, Fibonacci's Liber Abaci, Springer, 2003, pp. 404-405 and [26] on p. 627.
  • Simson, [No first name given], An explanation of an obscure passage in Albert Girard's Commentary ..., Phil. Trans. Royal Soc., 10 (1753), 430-433.
  • Parmanand Singh, The so-called fibonacci numbers in ancient and medieval India, Historia Mathematica, vol. 12 (1985), 229-244.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
  • James J. Tattersall, Elementary Number Theory in Nine Chapters, Cambridge University Press, 1999, pages 26-30.
  • S. Vajda, Fibonacci and Lucas numbers and the Golden Section, Ellis Horwood Ltd., Chichester, 1989.
  • N. N. Vorob'ev, Chisla fibonachchi [Russian], Moscow, 1951. English translation, Fibonacci Numbers, Blaisdell, New York and London, 1961.
  • N. N. Vorobiev, Fibonacci Numbers, Birkhauser (Basel; Boston) 2002.
  • D. Wells, The Penguin Dictionary of Curious and Interesting Numbers, pp. 61-67, Penguin Books 1987.
  • D. B. West, Combinatorial Mathematics, Cambridge, 2021, p. 53.
  • R. Witula, D. Slota, delta-Fibonacci Numbers, Appl. Anal. Discrete Math., 3 (2009), 310-329.

Crossrefs

First row of arrays A103323, A172236, A234357. Second row of arrays A099390, A048887, and A092921 (k-generalized Fibonacci numbers).
Cf. also A001175 (Pisano periods), A001177 (Entry points), A001176 (number of zeros in a fundamental period).
Fibonacci-Pascal triangles: A027926, A036355, A037027, A074829, A105809, A109906, A111006, A114197, A162741, A228074.
Fibonacci-Cayley triangle: A327992.
Boustrophedon transforms: A000738, A000744.
Numbers of prime factors: A022307 and A038575.
Cf. A061446 (primitive part of Fibonacci numbers), A000010 (comments on product formulas).
Number of digits of F(n): A020909 (base 2), A020911 (base 3), A020912 (base 4), A020913 (base 5), A060384 (base 10), A261585 (base 60).

Programs

  • Axiom
    [fibonacci(n) for n in 0..50]
    
  • GAP
    Fib:=[0,1];; for n in [3..10^3] do Fib[n]:=Fib[n-1]+Fib[n-2]; od; Fib; # Muniru A Asiru, Sep 03 2017
    
  • Haskell
    -- Based on code from http://www.haskell.org/haskellwiki/The_Fibonacci_sequence
    -- which also has other versions.
    fib :: Int -> Integer
    fib n = fibs !! n
        where
            fibs = 0 : 1 : zipWith (+) fibs (tail fibs)
    {- Example of use: map fib [0..38] Gerald McGarvey, Sep 29 2009 -}
    
  • Julia
    function fib(n)
       F = BigInt[1 1; 1 0]
       Fn = F^n
       Fn[2, 1]
    end
    println([fib(n) for n in 0:38]) # Peter Luschny, Feb 23 2017
    
  • Julia
    # faster
    function fibrec(n::Int)
        n == 0 && return (BigInt(0), BigInt(1))
        a, b = fibrec(div(n, 2))
        c = a * (b * 2 - a)
        d = a * a + b * b
        iseven(n) ? (c, d) : (d, c + d)
    end
    fibonacci(n::Int) = fibrec(n)[1]
    println([fibonacci(n) for n in 0:40]) # Peter Luschny, Apr 03 2022
    
  • Magma
    [Fibonacci(n): n in [0..38]];
    
  • Maple
    A000045 := proc(n) combinat[fibonacci](n); end;
    ZL:=[S, {a = Atom, b = Atom, S = Prod(X,Sequence(Prod(X,b))), X = Sequence(b,card >= 1)}, unlabelled]: seq(combstruct[count](ZL, size=n), n=0..38); # Zerinvary Lajos, Apr 04 2008
    spec := [B, {B=Sequence(Set(Z, card>1))}, unlabeled ]: seq(combstruct[count](spec, size=n), n=1..39); # Zerinvary Lajos, Apr 04 2008
    # The following Maple command isFib(n) yields true or false depending on whether n is a Fibonacci number or not.
    with(combinat): isFib := proc(n) local a: a := proc(n) local j: for j while fibonacci(j) <= n do fibonacci(j) end do: fibonacci(j-1) end proc: evalb(a(n) = n) end proc: # Emeric Deutsch, Nov 11 2014
  • Mathematica
    Table[Fibonacci[k], {k, 0, 50}] (* Mohammad K. Azarian, Jul 11 2015 *)
    Table[2^n Sqrt @ Product[(Cos[Pi k/(n + 1)]^2 + 1/4), {k, n}] // FullSimplify, {n, 15}]; (* Kasteleyn's formula specialized, Sarah-Marie Belcastro, Jul 04 2009 *)
    LinearRecurrence[{1, 1}, {0, 1}, 40] (* Harvey P. Dale, Aug 03 2014 *)
    Fibonacci[Range[0, 20]] (* Eric W. Weisstein, Sep 22 2017 *)
    CoefficientList[Series[-(x/(-1 + x + x^2)), {x, 0, 20}], x] (* Eric W. Weisstein, Sep 22 2017 *)
  • Maxima
    makelist(fib(n),n,0,100); /* Martin Ettl, Oct 21 2012 */
    
  • PARI
    a(n) = fibonacci(n)
    
  • PARI
    a(n) = imag(quadgen(5)^n)
    
  • PARI
    a(n)=my(phi=quadgen(5));(phi^n-(-1/phi)^n)/(2*phi-1) \\ Charles R Greathouse IV, Jun 17 2012
    
  • PARI
    is_A000045=A010056 \\ Characteristic function: see there. - M. F. Hasler, Feb 21 2025
    
  • Python
    # From Jaap Spies, Jan 05 2007, updated by Peter Luschny, Feb 21 2023:
    from itertools import islice
    def fib_gen():
        x, y = 0, 1
        while True:
            yield x
            x, y = y, x + y
    fib_list = lambda n: list(islice(fib_gen(), n))
    
  • Python
    is_A000045 = A010056 # See there: Characteristic function. Used e.g. in A377092.
    A000045 = lambda n: (4<M. F. Hasler, improving old code from 2023, Feb 20 2025
    
  • Python
    [(i:=-1)+(j:=1)] + [(j:=i+j)+(i:=j-i) for  in range(100)] # _Jwalin Bhatt, Apr 03 2025
    
  • Sage
    # Demonstration program from Jaap Spies:
    a = sloane.A000045; # choose sequence
    print(a)            # This returns the name of the sequence.
    print(a(38))        # This returns the 38th term of the sequence.
    print(a.list(39))   # This returns a list of the first 39 terms.
    
  • Sage
    a = BinaryRecurrenceSequence(1,1); print([a(n) for n in range(20)])
    # Closed form integer formula with F(1) = 0 from Paul Hankin (see link).
    F = lambda n: (4<<(n-1)*(n+2))//((4<<2*(n-1))-(2<<(n-1))-1)&((2<<(n-1))-1)
    print([F(n) for n in range(20)]) # Peter Luschny, Aug 28 2016
    
  • Sage
    print(list(fibonacci_sequence(0, 40))) # Bruno Berselli, Jun 26 2014
    
  • Scala
    def fibonacci(n: BigInt): BigInt = {
      val zero = BigInt(0)
      def fibTail(n: BigInt, a: BigInt, b: BigInt): BigInt = n match {
        case `zero` => a
        case _ => fibTail(n - 1, b, a + b)
      }
      fibTail(n, 0, 1)
    } // Based on "Case 3: Tail Recursion" from Carrasquel (2016) link
    (0 to 49).map(fibonacci()) // _Alonso del Arte, Apr 13 2019

Formula

G.f.: x / (1 - x - x^2).
G.f.: Sum_{n>=0} x^n * Product_{k=1..n} (k + x)/(1 + k*x). - Paul D. Hanna, Oct 26 2013
F(n) = ((1+sqrt(5))^n - (1-sqrt(5))^n)/(2^n*sqrt(5)).
Alternatively, F(n) = ((1/2+sqrt(5)/2)^n - (1/2-sqrt(5)/2)^n)/sqrt(5).
F(n) = F(n-1) + F(n-2) = -(-1)^n F(-n).
F(n) = round(phi^n/sqrt(5)).
F(n+1) = Sum_{j=0..floor(n/2)} binomial(n-j, j).
A strong divisibility sequence, that is, gcd(a(n), a(m)) = a(gcd(n, m)) for all positive integers n and m. - Michael Somos, Jan 03 2017
E.g.f.: (2/sqrt(5))*exp(x/2)*sinh(sqrt(5)*x/2). - Len Smiley, Nov 30 2001
[0 1; 1 1]^n [0 1] = [F(n); F(n+1)]
x | F(n) ==> x | F(kn).
A sufficient condition for F(m) to be divisible by a prime p is (p - 1) divides m, if p == 1 or 4 (mod 5); (p + 1) divides m, if p == 2 or 3 (mod 5); or 5 divides m, if p = 5. (This is essentially Theorem 180 in Hardy and Wright.) - Fred W. Helenius (fredh(AT)ix.netcom.com), Jun 29 2001
a(n)=F(n) has the property: F(n)*F(m) + F(n+1)*F(m+1) = F(n+m+1). - Miklos Kristof, Nov 13 2003
From Kurmang. Aziz. Rashid, Feb 21 2004: (Start)
Conjecture 1: for n >= 2, sqrt(F(2n+1) + F(2n+2) + F(2n+3) + F(2n+4) + 2*(-1)^n) = (F(2n+1) + 2*(-1)^n)/F(n-1). [For a proof see Comments section.]
Conjecture 2: for n >= 0, (F(n+2)*F(n+3)) - (F(n+1)*F(n+4)) + (-1)^n = 0.
[Two more conjectures removed by Peter Luschny, Nov 17 2017]
Theorem 1: for n >= 0, (F(n+3)^ 2 - F(n+1)^ 2)/F(n+2) = (F(n+3)+ F(n+1)).
Theorem 2: for n >= 0, F(n+10) = 11*F(n+5) + F(n).
Theorem 3: for n >= 6, F(n) = 4*F(n-3) + F(n-6). (End)
Conjecture 2 of Rashid is actually a special case of the general law F(n)*F(m) + F(n+1)*F(m+1) = F(n+m+1) (take n <- n+1 and m <- -(n+4) in this law). - Harmel Nestra (harmel.nestra(AT)ut.ee), Apr 22 2005
Conjecture 2 of Rashid Kurmang simplified: F(n)*F(n+3) = F(n+1)*F(n+2)-(-1)^n. Follows from d'Ocagne's identity: m=n+2. - Alex Ratushnyak, May 06 2012
Conjecture: for all c such that 2-phi <= c < 2*(2-phi) we have F(n) = floor(phi*a(n-1)+c) for n > 2. - Gerald McGarvey, Jul 21 2004
For x > phi, Sum_{n>=0} F(n)/x^n = x/(x^2 - x - 1). - Gerald McGarvey, Oct 27 2004
F(n+1) = exponent of the n-th term in the series f(x, 1) determined by the equation f(x, y) = xy + f(xy, x). - Jonathan Sondow, Dec 19 2004
a(n-1) = Sum_{k=0..n} (-1)^k*binomial(n-ceiling(k/2), floor(k/2)). - Benoit Cloitre, May 05 2005
a(n) = Sum_{k=0..n} abs(A108299(n, k)). - Reinhard Zumkeller, Jun 01 2005
a(n) = A001222(A000304(n)).
F(n+1) = Sum_{k=0..n} binomial((n+k)/2, (n-k)/2)(1+(-1)^(n-k))/2. - Paul Barry, Aug 28 2005
Fibonacci(n) = Product_{j=1..ceiling(n/2)-1} (1 + 4(cos(j*Pi/n))^2). [Bicknell and Hoggatt, pp. 47-48.] - Emeric Deutsch, Oct 15 2006
F(n) = 2^-(n-1)*Sum_{k=0..floor((n-1)/2)} binomial(n,2*k+1)*5^k. - Hieronymus Fischer, Feb 07 2006
a(n) = (b(n+1) + b(n-1))/n where {b(n)} is the sequence A001629. - Sergio Falcon, Nov 22 2006
F(n*m) = Sum_{k = 0..m} binomial(m,k)*F(n-1)^k*F(n)^(m-k)*F(m-k). The generating function of F(n*m) (n fixed, m = 0,1,2,...) is G(x) = F(n)*x / ((1 - F(n-1)*x)^2 - F(n)*x*(1 - F(n-1)*x) - (F(n)*x)^2). E.g., F(15) = 610 = F(5*3) = binomial(3,0)* F(4)^0*F(5)^3*F(3) + binomial(3,1)* F(4)^1*F(5)^2*F(2) + binomial(3,2)* F(4)^2*F(5)^1*F(1) + binomial(3,3)* F(4)^3*F(5)^0*F(0) = 1*1*125*2 + 3*3*25*1 + 3*9*5*1 + 1*27*1*0 = 250 + 225 + 135 + 0 = 610. - Miklos Kristof, Feb 12 2007
From Miklos Kristof, Mar 19 2007: (Start)
Let L(n) = A000032(n) = Lucas numbers. Then:
For a >= b and odd b, F(a+b) + F(a-b) = L(a)*F(b).
For a >= b and even b, F(a+b) + F(a-b) = F(a)*L(b).
For a >= b and odd b, F(a+b) - F(a-b) = F(a)*L(b).
For a >= b and even b, F(a+b) - F(a-b) = L(a)*F(b).
F(n+m) + (-1)^m*F(n-m) = F(n)*L(m);
F(n+m) - (-1)^m*F(n-m) = L(n)*F(m);
F(n+m+k) + (-1)^k*F(n+m-k) + (-1)^m*(F(n-m+k) + (-1)^k*F(n-m-k)) = F(n)*L(m)*L(k);
F(n+m+k) - (-1)^k*F(n+m-k) + (-1)^m*(F(n-m+k) - (-1)^k*F(n-m-k)) = L(n)*L(m)*F(k);
F(n+m+k) + (-1)^k*F(n+m-k) - (-1)^m*(F(n-m+k) + (-1)^k*F(n-m-k)) = L(n)*F(m)*L(k);
F(n+m+k) - (-1)^k*F(n+m-k) - (-1)^m*(F(n-m+k) - (-1)^k*F(n-m-k)) = 5*F(n)*F(m)*F(k). (End)
A corollary to Kristof 2007 is 2*F(a+b) = F(a)*L(b) + L(a)*F(b). - Graeme McRae, Apr 24 2014
For n > m, the sum of the 2m consecutive Fibonacci numbers F(n-m-1) thru F(n+m-2) is F(n)*L(m) if m is odd, and L(n)*F(m) if m is even (see the McRae link). - Graeme McRae, Apr 24 2014.
F(n) = b(n) + (p-1)*Sum_{k=2..n-1} floor(b(k)/p)*F(n-k+1) where b(k) is the digital sum analog of the Fibonacci recurrence, defined by b(k) = ds_p(b(k-1)) + ds_p(b(k-2)), b(0)=0, b(1)=1, ds_p=digital sum base p. Example for base p=10: F(n) = A010077(n) + 9*Sum_{k=2..n-1} A059995(A010077(k))*F(n-k+1). - Hieronymus Fischer, Jul 01 2007
F(n) = b(n)+p*Sum_{k=2..n-1} floor(b(k)/p)*F(n-k+1) where b(k) is the digital product analog of the Fonacci recurrence, defined by b(k) = dp_p(b(k-1)) + dp_p(b(k-2)), b(0)=0, b(1)=1, dp_p=digital product base p. Example for base p=10: F(n) = A074867(n) + 10*Sum_{k=2..n-1} A059995(A074867(k))*F(n-k+1). - Hieronymus Fischer, Jul 01 2007
a(n) = denominator of continued fraction [1,1,1,...] (with n ones); e.g., 2/3 = continued fraction [1,1,1]; where barover[1] = [1,1,1,...] = 0.6180339.... - Gary W. Adamson, Nov 29 2007
F(n + 3) = 2F(n + 2) - F(n), F(n + 4) = 3F(n + 2) - F(n), F(n + 8) = 7F(n + 4) - F(n), F(n + 12) = 18F(n + 6) - F(n). - Paul Curtz, Feb 01 2008
a(2^n) = Product_{i=0..n-2} B(i) where B(i) is A001566. Example 3*7*47 = F(16). - Kenneth J Ramsey, Apr 23 2008
a(n+1) = Sum_{k=0..n} A109466(n,k)*(-1)^(n-k). -Philippe Deléham, Oct 26 2008
a(n) = Sum_{l_1=0..n+1} Sum_{l_2=0..n}...Sum_{l_i=0..n-i}... Sum_{l_n=0..1} delta(l_1,l_2,...,l_i,...,l_n), where delta(l_1,l_2,...,l_i,...,l_n) = 0 if any l_i + l_(i+1) >= 2 for i=1..n-1 and delta(l_1,l_2,...,l_i,...,l_n) = 1 otherwise. - Thomas Wieder, Feb 25 2009
a(n+1) = 2^n sqrt(Product_{k=1..n} cos(k Pi/(n+1))^2+1/4) (Kasteleyn's formula specialized). - Sarah-Marie Belcastro, Jul 04 2009
a(n+1) = Sum_{k=floor(n/2) mod 5} C(n,k) - Sum_{k=floor((n+5)/2) mod 5} C(n,k) = A173125(n) - A173126(n) = |A054877(n)-A052964(n-1)|. - Henry Bottomley, Feb 10 2010
If p[i] = modp(i,2) and if A is Hessenberg matrix of order n defined by: A[i,j] = p[j-i+1], (i <= j), A[i,j]=-1, (i=j+1), and A[i,j]=0 otherwise. Then, for n >= 1, a(n)=det A. - Milan Janjic, May 02 2010
Limit_{k->oo} F(k+n)/F(k) = (L(n) + F(n)*sqrt(5))/2 with the Lucas numbers L(n) = A000032(n). - Johannes W. Meijer, May 27 2010
For n >= 1, F(n) = round(log_2(2^(phi*F(n-1)) + 2^(phi*F(n-2)))), where phi is the golden ratio. - Vladimir Shevelev, Jun 24 2010, Jun 27 2010
For n >= 1, a(n+1) = ceiling(phi*a(n)), if n is even and a(n+1) = floor(phi*a(n)), if n is odd (phi = golden ratio). - Vladimir Shevelev, Jul 01 2010
a(n) = 2*a(n-2) + a(n-3), n > 2. - Gary Detlefs, Sep 08 2010
a(2^n) = Product_{i=0..n-1} A000032(2^i). - Vladimir Shevelev, Nov 28 2010
a(n)^2 - a(n-1)^2 = a(n+1)*a(n-2), see A121646.
a(n) = sqrt((-1)^k*(a(n+k)^2 - a(k)*a(2n+k))), for any k. - Gary Detlefs, Dec 03 2010
F(2*n) = F(n+2)^2 - F(n+1)^2 - 2*F(n)^2. - Richard R. Forberg, Jun 04 2011
From Artur Jasinski, Nov 17 2011: (Start)
(-1)^(n+1) = F(n)^2 + F(n)*F(1+n) - F(1+n)^2.
F(n) = F(n+2) - 1 + (F(n+1))^4 + 2*(F(n+1)^3*F(n+2)) - (F(n+1)*F(n+2))^2 - 2*F(n+1)(F(n+2))^3 + (F(n+2))^4 - F(n+1). (End)
F(n) = 1 + Sum_{x=1..n-2} F(x). - Joseph P. Shoulak, Feb 05 2012
F(n) = 4*F(n-2) - 2*F(n-3) - F(n-6). - Gary Detlefs, Apr 01 2012
F(n) = round(phi^(n+1)/(phi+2)). - Thomas Ordowski, Apr 20 2012
From Sergei N. Gladkovskii, Jun 03 2012: (Start)
G.f.: A(x) = x/(1-x-x^2) = G(0)/sqrt(5) where G(k) = 1 - ((-1)^k)*2^k/(a^k - b*x*a^k*2^k/(b*x*2^k - 2*((-1)^k)*c^k/G(k+1))) and a=3+sqrt(5), b=1+sqrt(5), c=3-sqrt(5); (continued fraction, 3rd kind, 3-step).
Let E(x) be the e.g.f., i.e.,
E(x) = 1*x + (1/2)*x^2 + (1/3)*x^3 + (1/8)*x^4 + (1/24)*x^5 + (1/90)*x^6 + (13/5040)*x^7 + ...; then
E(x) = G(0)/sqrt(5); G(k) = 1 - ((-1)^k)*2^k/(a^k - b*x*a^k*2^k/(b*x*2^k - 2*((-1)^k)*(k+1)*c^k/G(k+1))), where a=3+sqrt(5), b=1+sqrt(5), c=3-sqrt(5); (continued fraction, 3rd kind, 3-step).
(End)
From Hieronymus Fischer, Nov 30 2012: (Start)
F(n) = 1 + Sum_{j_1=1..n-2} 1 + Sum_{j_1=1..n-2} Sum_{j_2=1..j_1-2} 1 + Sum_{j_1=1..n-2} Sum_{j_2=1..j_1-2} Sum_{j_3=1..j_2-2} 1 + ... + Sum_{j_1=1..n-2} Sum_{j_2=1..j_1-2} Sum_{j_3=1..j_2-2} ... Sum_{j_k=1..j_(k-1)-2} 1, where k = floor((n-1)/2).
Example: F(6) = 1 + Sum_{j=1..4} 1 + Sum_{j=1..4} Sum_{k=1..(j-2)} 1 + 0 = 1 + (1 + 1 + 1 + 1) + (1 + (1 + 1)) = 8.
F(n) = Sum_{j=0..k} S(j+1,n-2j), where k = floor((n-1)/2) and the S(j,n) are the n-th j-simplex sums: S(1,n) = 1 is the 1-simplex sum, S(2,n) = Sum_{k=1..n} S(1,k) = 1+1+...+1 = n is the 2-simplex sum, S(3,n) = Sum_{k=1..n} S(2,k) = 1+2+3+...+n is the 3-simplex sum (= triangular numbers = A000217), S(4,n) = Sum_{k=1..n} S(3,k) = 1+3+6+...+n(n+1)/2 is the 4-simplex sum (= tetrahedral numbers = A000292) and so on.
Since S(j,n) = binomial(n-2+j,j-1), the formula above equals the well-known binomial formula, essentially. (End)
G.f.: A(x) = x / (1 - x / (1 - x / (1 + x))). - Michael Somos, Jan 04 2013
Sum_{n >= 1} (-1)^(n-1)/(a(n)*a(n+1)) = 1/phi (phi=golden ratio). - Vladimir Shevelev, Feb 22 2013
From Raul Prisacariu, Oct 29 2023: (Start)
For odd k, Sum_{n >= 1} a(k)^2*(-1)^(n-1)/(a(k*n)*a(k*n+k)) = phi^(-k).
For even k, Sum_{n >= 1} a(k)^2/(a(k*n)*a(k*n+k)) = phi^(-k). (End)
From Vladimir Shevelev, Feb 24 2013: (Start)
(1) Expression a(n+1) via a(n): a(n+1) = (a(n) + sqrt(5*(a(n))^2 + 4*(-1)^n))/2;
(2) Sum_{k=1..n} (-1)^(k-1)/(a(k)*a(k+1)) = a(n)/a(n+1);
(3) a(n)/a(n+1) = 1/phi + r(n), where |r(n)| < 1/(a(n+1)*a(n+2)). (End)
F(n+1) = F(n)/2 + sqrt((-1)^n + 5*F(n)^2/4), n >= 0. F(n+1) = U_n(i/2)/i^n, (U:= Chebyshev polynomial of the 2nd kind, i=sqrt(-1)). - Bill Gosper, Mar 04 2013
G.f.: -Q(0) where Q(k) = 1 - (1+x)/(1 - x/(x - 1/Q(k+1) )); (continued fraction). - Sergei N. Gladkovskii, Mar 06 2013
G.f.: x - 1 - 1/x + (1/x)/Q(0), where Q(k) = 1 - (k+1)*x/(1 - x/(x - (k+1)/Q(k+1))); (continued fraction). - Sergei N. Gladkovskii, Apr 23 2013
G.f.: x*G(0), where G(k) = 1 + x*(1+x)/(1 - x*(1+x)/(x*(1+x) + 1/G(k+1) )); (continued fraction). - Sergei N. Gladkovskii, Jul 08 2013
G.f.: x^2 - 1 + 2*x^2/(W(0)-2), where W(k) = 1 + 1/(1 - x*(k + x)/( x*(k+1 + x) + 1/W(k+1) )); (continued fraction). - Sergei N. Gladkovskii, Aug 28 2013
G.f.: Q(0) - 1, where Q(k) = 1 + x^2 + (k+2)*x - x*(k+1 + x)/Q(k+1); (continued fraction). - Sergei N. Gladkovskii, Oct 06 2013
Let b(n) = b(n-1) + b(n-2), with b(0) = 0, b(1) = phi. Then, for n >= 2, F(n) = floor(b(n-1)) if n is even, F(n) = ceiling(b(n-1)), if n is odd, with convergence. - Richard R. Forberg, Jan 19 2014
a(n) = Sum_{t1*g(1)+t2*g(2)+...+tn*g(n)=n} multinomial(t1+t2+...+tn,t1,t2,...,tn), where g(k)=2*k-1. - Mircea Merca, Feb 27 2014
F(n) = round(sqrt(F(n-1)^2 + F(n)^2 + F(n+1)^2)/2), for n > 0. This rule appears to apply to any sequence of the form a(n) = a(n-1) + a(n-2), for any two values of a(0) and a(1), if n is sufficiently large. - Richard R. Forberg, Jul 27 2014
F(n) = round(2/(1/F(n) + 1/F(n+1) + 1/F(n+2))), for n > 0. This rule also appears to apply to any sequence of the form a(n) = a(n-1) + a(n-2), for any two values of a(0) and a(1), if n is sufficiently large. - Richard R. Forberg, Aug 03 2014
F(n) = round(1/(Sum_{j>=n+2} 1/F(j))). - Richard R. Forberg, Aug 14 2014
a(n) = hypergeometric([-n/2+1/2, -n/2+1], [-n+1], -4) for n >= 2. - Peter Luschny, Sep 19 2014
Limit_{n -> oo} (log F(n+1)/log F(n))^n = e. - Thomas Ordowski, Oct 06 2014
F(n) = (L(n+1)^2 - L(n-1)^2)/(5*L(n)), where L(n) is A000032(n), with a similar inverse relationship. - Richard R. Forberg, Nov 17 2014
Consider the graph G[1-vertex;1-loop,2-loop] in comment above. Construct the power matrix array T(n,j) = [A^*j]*[S^*(j-1)] where A=(1,1,0,...) and S=(0,1,0,...)(A063524). [* is convolution operation] Define S^*0=I with I=(1,0,...). Then T(n,j) counts n-walks containing (j) loops and a(n-1) = Sum_{j=1..n} T(n,j). - David Neil McGrath, Nov 21 2014
Define F(-n) to be F(n) for n odd and -F(n) for n even. Then for all n and k, F(n) = F(k)*F(n-k+3) - F(k-1)*F(n-k+2) - F(k-2)*F(n-k) + (-1)^k*F(n-2k+2). - Charlie Marion, Dec 04 2014
F(n+k)^2 - L(k)*F(n)*F(n+k) + (-1)^k*F(n)^2 = (-1)^n*F(k)^2, if L(k) = A000032(k). - Alexander Samokrutov, Jul 20 2015
F(2*n) = F(n+1)^2 - F(n-1)^2, similar to Koshy (D) and Forberg 2011, but different. - Hermann Stamm-Wilbrandt, Aug 12 2015
F(n+1) = ceiling( (1/phi)*Sum_{k=0..n} F(k) ). - Tom Edgar, Sep 10 2015
a(n) = (L(n-3) + L(n+3))/10 where L(n)=A000032(n). - J. M. Bergot, Nov 25 2015
From Bob Selcoe, Mar 27 2016: (Start)
F(n) = (F(2n+k+1) - F(n+1)*F(n+k+1))/F(n+k), k >= 0.
Thus when k=0: F(n) = sqrt(F(2n+1) - F(n+1)^2).
F(n) = (F(3n) - F(n+1)^3 + F(n-1)^3)^(1/3).
F(n+2k) = binomial transform of any subsequence starting with F(n). Example F(6)=8: 1*8 = F(6)=8; 1*8 + 1*13 = F(8)=21; 1*8 + 2*13 + 1*21 = F(10)=55; 1*8 + 3*13 + 3*21 + 1*34 = F(12)=144, etc. This formula applies to Fibonacci-type sequences with any two seed values for a(0) and a(1) (e.g., Lucas sequence A000032: a(0)=2, a(1)=1).
(End)
F(n) = L(k)*F(n-k) + (-1)^(k+1)*F(n-2k) for all k >= 0, where L(k) = A000032(k). - Anton Zakharov, Aug 02 2016
From Ilya Gutkovskiy, Aug 03 2016: (Start)
a(n) = F_n(1), where F_n(x) are the Fibonacci polynomials.
Inverse binomial transform of A001906.
Number of zeros in substitution system {0 -> 11, 1 -> 1010} at step n from initial string "1" (1 -> 1010 -> 101011101011 -> ...) multiplied by 1/A000079(n). (End)
For n >= 2, a(n) = 2^(n^2+n) - (4^n-2^n-1)*floor(2^(n^2+n)/(4^n-2^n-1)) - 2^n*floor(2^(n^2) - (2^n-1-1/2^n)*floor(2^(n^2+n)/(4^n-2^n-1))). - Benoit Cloitre, Apr 17 2017
f(n+1) = Sum_{j=0..floor(n/2)} Sum_{k=0..j} binomial(n-2j,k)*binomial(j,k). - Tony Foster III, Sep 04 2017
F(n) = Sum_{k=0..floor((n-1)/2)} ( (n-k-1)! / ((n-2k-1)! * k!) ). - Zhandos Mambetaliyev, Nov 08 2017
For x even, F(n) = (F(n+x) + F(n-x))/L(x). For x odd, F(n) = (F(n+x) - F(n-x))/L(x) where n >= x in both cases. Therefore F(n) = F(2*n)/L(n) for n >= 0. - David James Sycamore, May 04 2018
From Isaac Saffold, Jul 19 2018: (Start)
Let [a/p] denote the Legendre symbol. Then, for an odd prime p:
F(p+n) == [5/p]*F([5/p]+n) (mod p), if [5/p] = 1 or -1.
F(p+n) == 3*F(n) (mod p), if [5/p] = 0 (i.e., p = 5).
This is true for negative-indexed terms as well, if this sequence is extended by the negafibonacci numbers (i.e., F(-n) = A039834(n)). (End)
a(n) = A094718(4, n). a(n) = A101220(0, j, n).
a(n) = A090888(0, n+1) = A118654(0, n+1) = A118654(1, n-1) = A109754(0, n) = A109754(1, n-1), for n > 0.
a(n) = (L(n-3) + L(n-2) + L(n-1) + L(n))/5 with L(n)=A000032(n). - Art Baker, Jan 04 2019
F(n) = F(k-1)*F(abs(n-k-2)) + F(k-1)*F(n-k-1) + F(k)*F(abs(n-k-2)) + 2*F(k)*F(n-k-1), for n > k > 0. - Joseph M. Shunia, Aug 12 2019
F(n) = F(n-k+2)*F(k-1) + F(n-k+1)*F(k-2) for all k such that 2 <= k <= n. - Michael Tulskikh, Oct 09 2019
F(n)^2 - F(n+k)*F(n-k) = (-1)^(n+k) * F(k)^2 for 2 <= k <= n [Catalan's identity]. - Hermann Stamm-Wilbrandt, May 07 2021
Sum_{n>=1} 1/a(n) = A079586 is the reciprocal Fibonacci constant. - Gennady Eremin, Aug 06 2021
a(n) = Product_{d|n} b(d) = Product_{k=1..n} b(gcd(n,k))^(1/phi(n/gcd(n,k))) = Product_{k=1..n} b(n/gcd(n,k))^(1/phi(n/gcd(n,k))) where b(n) = A061446(n) = primitive part of a(n), phi(n) = A000010(n). - Richard L. Ollerton, Nov 08 2021
a(n) = 2*i^(1-n)*sin(n*arccos(i/2))/sqrt(5), i=sqrt(-1). - Bill Gosper, May 05 2022
a(n) = i^(n-1)*sin(n*c)/sin(c) = i^(n-1)*sin(c*n)*csc(c), where c = Pi/2 + i*arccsch(2). - Peter Luschny, May 23 2022
F(2n) = Sum_{k=1..n} (k/5)*binomial(2n, n+k), where (k/5) is the Legendre or Jacobi Symbol; F(2n+1)= Sum_{k=1..n} (-(k+2)/5)*binomial(2n+1, n+k), where (-(k+2)/5) is the Legendre or Jacobi Symbol. For example, F(10) = 1*binomial(10,6) - 1*binomial(10,7) - 1*binomial(10,8) + 1*binomial(10,9) + 0*binomial(10,10), F(11) = 1*binomial(11,6) - 1*binomial(11,7) + 0*binomial(11,8) - 1*binomial(11,9) + 1*binomial(11,10) + 1*binomial(11,11). - Yike Li, Aug 21 2022
For n > 0, 1/F(n) = Sum_{k>=1} F(n*k)/(F(n+2)^(k+1)). - Diego Rattaggi, Oct 26 2022
From Andrea Pinos, Dec 02 2022: (Start)
For n == 0 (mod 4): F(n) = F((n+2)/2)*( F(n/2) + F((n/2)-2) ) + 1;
For n == 1 (mod 4): F(n) = F((n-1)/2)*( F((n-1)/2) + F(2+(n-1)/2) ) + 1;
For n == 2 (mod 4): F(n) = F((n-2)/2)*( F(n/2) + F((n/2)+2) ) + 1;
For n == 3 (mod 4): F(n) = F((n-1)/2)*( F((n-1)/2) + F(2+(n-1)/2) ) - 1. (End)
F(n) = Sum_{i=0..n-1} F(i)^2 / F(n-1). - Jules Beauchamp, May 03 2025

A001263 Triangle of Narayana numbers T(n,k) = C(n-1,k-1)*C(n,k-1)/k with 1 <= k <= n, read by rows. Also called the Catalan triangle.

Original entry on oeis.org

1, 1, 1, 1, 3, 1, 1, 6, 6, 1, 1, 10, 20, 10, 1, 1, 15, 50, 50, 15, 1, 1, 21, 105, 175, 105, 21, 1, 1, 28, 196, 490, 490, 196, 28, 1, 1, 36, 336, 1176, 1764, 1176, 336, 36, 1, 1, 45, 540, 2520, 5292, 5292, 2520, 540, 45, 1, 1, 55, 825, 4950, 13860, 19404, 13860, 4950, 825
Offset: 1

Views

Author

Keywords

Comments

Number of antichains (or order ideals) in the poset 2*(k-1)*(n-k) or plane partitions with rows <= k-1, columns <= n-k and entries <= 2. - Mitch Harris, Jul 15 2000
T(n,k) is the number of Dyck n-paths with exactly k peaks. a(n,k) = number of pairs (P,Q) of lattice paths from (0,0) to (k,n+1-k), each consisting of unit steps East or North, such that P lies strictly above Q except at the endpoints. - David Callan, Mar 23 2004
Number of permutations of [n] which avoid-132 and have k-1 descents. - Mike Zabrocki, Aug 26 2004
T(n,k) is the number of paths through n panes of glass, entering and leaving from one side, of length 2n with k reflections (where traversing one pane of glass is the unit length). - Mitch Harris, Jul 06 2006
Antidiagonal sums given by A004148 (without first term).
T(n,k) is the number of full binary trees with n internal nodes and k-1 jumps. In the preorder traversal of a full binary tree, any transition from a node at a deeper level to a node on a strictly higher level is called a jump. - Emeric Deutsch, Jan 18 2007
From Gary W. Adamson, Oct 22 2007: (Start)
The n-th row can be generated by the following operation using an ascending row of (n-1) triangular terms, (A) and a descending row, (B); e.g., row 6:
A: 1....3....6....10....15
B: 15...10....6.....3.....1
C: 1...15...50....50....15....1 = row 6.
Leftmost column of A,B -> first two terms of C; then followed by the operation B*C/A of current column = next term of row C, (e.g., 10*15/3 = 50). Continuing with the operation, we get row 6: (1, 15, 50, 50, 15, 1). (End)
The previous comment can be upgraded to: The ConvOffsStoT transform of the triangular series; and by rows, row 6 is the ConvOffs transform of (1, 3, 6, 10, 15). Refer to triangle A117401 as another example of the ConvOffsStoT transform, and OEIS under Maple Transforms. - Gary W. Adamson, Jul 09 2012
For a connection to Lagrange inversion, see A134264. - Tom Copeland, Aug 15 2008
T(n,k) is also the number of order-decreasing and order-preserving mappings (of an n-element set) of height k (height of a mapping is the cardinal of its image set). - Abdullahi Umar, Aug 21 2008
Row n of this triangle is the h-vector of the simplicial complex dual to an associahedron of type A_n [Fomin & Reading, p.60]. See A033282 for the corresponding array of f-vectors for associahedra of type A_n. See A008459 and A145903 for the h-vectors for associahedra of type B and type D respectively. The Hilbert transform of this triangle (see A145905 for the definition of this transform) is A145904. - Peter Bala, Oct 27 2008
T(n,k) is also the number of noncrossing set partitions of [n] into k blocks. Given a partition P of the set {1,2,...,n}, a crossing in P are four integers [a, b, c, d] with 1 <= a < b < c < d <= n for which a, c are together in a block, and b, d are together in a different block. A noncrossing partition is a partition with no crossings. - Peter Luschny, Apr 29 2011
Noncrossing set partitions are also called genus 0 partitions. In terms of genus-dependent Stirling numbers of the second kind S2(n,k,g) that count partitions of genus g of an n-set into k nonempty subsets, one has T(n,k) = S2(n,k,0). - Robert Coquereaux, Feb 15 2024
Diagonals of A089732 are rows of A001263. - Tom Copeland, May 14 2012
From Peter Bala, Aug 07 2013: (Start)
Let E(y) = Sum_{n >= 0} y^n/(n!*(n+1)!) = 1/sqrt(y)*BesselI(1,2*sqrt(y)). Then this triangle is the generalized Riordan array (E(y), y) with respect to the sequence n!*(n+1)! as defined in Wang and Wang.
Generating function E(y)*E(x*y) = 1 + (1 + x)*y/(1!*2!) + (1 + 3*x + x^2)*y^2/(2!*3!) + (1 + 6*x + 6*x^2 + x^3)*y^3/(3!*4!) + .... Cf. A105278 with a generating function exp(y)*E(x*y).
The n-th power of this array has a generating function E(y)^n*E(x*y). In particular, the matrix inverse A103364 has a generating function E(x*y)/E(y). (End)
T(n,k) is the number of nonintersecting n arches above the x axis, starting and ending on vertices 1 to 2n, with k being the number of arches starting on an odd vertice and ending on a higher even vertice. Example: T(3,2)=3 [16,25,34] [14,23,56] [12,36,45]. - Roger Ford, Jun 14 2014
Fomin and Reading on p. 31 state that the rows of the Narayana matrix are the h-vectors of the associahedra as well as its dual. - Tom Copeland, Jun 27 2017
The row polynomials P(n, x) = Sum_{k=1..n} T(n, k)*x^(k-1), together with P(0, x) = 1, multiplied by (n+1) are the numerator polynomials of the o.g.f.s of the diagonal sequences of the triangle A103371: G(n, x) = (n+1)*P(n, x)/(1 - x)^{2*n+1}, for n >= 0. This is proved with Lagrange's theorem applied to the Riordan triangle A135278 = (1/(1 - x)^2, x/(1 - x)). See an example below. - Wolfdieter Lang, Jul 31 2017
T(n,k) is the number of Dyck paths of semilength n with k-1 uu-blocks (pairs of consecutive up-steps). - Alexander Burstein, Jun 22 2020
In case you were searching for Narayama numbers, the correct spelling is Narayana. - N. J. A. Sloane, Nov 11 2020
Named after the Canadian mathematician Tadepalli Venkata Narayana (1930-1987). They were also called "Runyon numbers" after John P. Runyon (1922-2013) of Bell Telephone Laboratories, who used them in a study of a telephone traffic system. - Amiram Eldar, Apr 15 2021 The Narayana numbers were first studied by Percy Alexander MacMahon (see reference, Article 495) as pointed out by Bóna and Sagan (see link). - Peter Luschny, Apr 28 2022
From Andrea Arlette España, Nov 14 2022: (Start)
T(n,k) is the degree distribution of the paths towards synchronization in the transition diagram associated with the Laplacian system over the complete graph K_n, corresponding to ordered initial conditions x_1 < x_2 < ... < x_n.
T(n,k) for n=2N+1 and k=N+1 is the number of states in the transition diagram associated with the Laplacian system over the complete bipartite graph K_{N,N}, corresponding to ordered (x_1 < x_2 < ... < x_N and x_{N+1} < x_{N+2} < ... < x_{2N}) and balanced (Sum_{i=1..N} x_i/N = Sum_{i=N+1..2N} x_i/N) initial conditions. (End)
From Gus Wiseman, Jan 23 2023: (Start)
Also the number of unlabeled ordered rooted trees with n nodes and k leaves. See the link by Marko Riedel. For example, row n = 5 counts the following trees:
((((o)))) (((o))o) ((o)oo) (oooo)
(((o)o)) ((oo)o)
(((oo))) ((ooo))
((o)(o)) (o(o)o)
((o(o))) (o(oo))
(o((o))) (oo(o))
The unordered version is A055277. Leaves in standard ordered trees are counted by A358371. (End)

Examples

			The initial rows of the triangle are:
  [1] 1
  [2] 1,  1
  [3] 1,  3,   1
  [4] 1,  6,   6,    1
  [5] 1, 10,  20,   10,    1
  [6] 1, 15,  50,   50,   15,    1
  [7] 1, 21, 105,  175,  105,   21,   1
  [8] 1, 28, 196,  490,  490,  196,  28,  1
  [9] 1, 36, 336, 1176, 1764, 1176, 336, 36, 1;
  ...
For all n, 12...n (1 block) and 1|2|3|...|n (n blocks) are noncrossing set partitions.
Example of umbral representation:
  A007318(5,k)=[1,5/1,5*4/(2*1),...,1]=(1,5,10,10,5,1),
  so A001263(5,k)={1,b(5)/b(1),b(5)*b(4)/[b(2)*b(1)],...,1}
  = [1,30/2,30*20/(6*2),...,1]=(1,15,50,50,15,1).
  First = last term = b.(5!)/[b.(0!)*b.(5!)]= 1. - _Tom Copeland_, Sep 21 2011
Row polynomials and diagonal sequences of A103371: n = 4,  P(4, x) = 1 + 6*x + 6*x^2 + x^3, and the o.g.f. of fifth diagonal is G(4, x) = 5* P(4, x)/(1 - x)^9, namely [5, 75, 525, ...]. See a comment above. - _Wolfdieter Lang_, Jul 31 2017
		

References

  • Berman and Koehler, Cardinalities of finite distributive lattices, Mitteilungen aus dem Mathematischen Seminar Giessen, 121 (1976), pp. 103-124.
  • Miklos Bona, editor, Handbook of Enumerative Combinatorics, CRC Press, 2015, page 196.
  • P. A. MacMahon, Combinatory Analysis, Vols. 1 and 2, Cambridge University Press, 1915, 1916; reprinted by Chelsea, 1960, Sect. 495.
  • T. V. Narayana, Lattice Path Combinatorics with Statistical Applications. Univ. Toronto Press, 1979, pp. 100-101.
  • A. Nkwanta, Lattice paths and RNA secondary structures, in African Americans in Mathematics, ed. N. Dean, Amer. Math. Soc., 1997, pp. 137-147.
  • T. K. Petersen, Eulerian Numbers, Birkhäuser, 2015, Chapter 2.
  • J. Riordan, Combinatorial Identities, Wiley, 1968, p. 17.
  • R. P. Stanley, Enumerative Combinatorics, Cambridge, Vol. 2, 1999; see Problem 6.36(a) and (b).

Crossrefs

Other versions are in A090181 and A131198. - Philippe Deléham, Nov 18 2007
Cf. variants: A181143, A181144. - Paul D. Hanna, Oct 13 2010
Row sums give A000108 (Catalan numbers), n>0.
A008459 (h-vectors type B associahedra), A033282 (f-vectors type A associahedra), A145903 (h-vectors type D associahedra), A145904 (Hilbert transform). - Peter Bala, Oct 27 2008
Cf. A016098 and A189232 for numbers of crossing set partitions.
Cf. A243752.
Triangles of generalized binomial coefficients (n,k)_m (or generalized Pascal triangles) for m = 1,...,12: A007318 (Pascal), A001263, A056939, A056940, A056941, A142465, A142467, A142468, A174109, A342889, A342890, A342891.

Programs

  • GAP
    Flat(List([1..11],n->List([1..n],k->Binomial(n-1,k-1)*Binomial(n,k-1)/k))); # Muniru A Asiru, Jul 12 2018
  • Haskell
    a001263 n k = a001263_tabl !! (n-1) !! (k-1)
    a001263_row n = a001263_tabl !! (n-1)
    a001263_tabl = zipWith dt a007318_tabl (tail a007318_tabl) where
       dt us vs = zipWith (-) (zipWith (*) us (tail vs))
                              (zipWith (*) (tail us ++ [0]) (init vs))
    -- Reinhard Zumkeller, Oct 10 2013
    
  • Magma
    /* triangle */ [[Binomial(n-1,k-1)*Binomial(n,k-1)/k : k in [1..n]]: n in [1.. 15]]; // Vincenzo Librandi, Oct 19 2014
    
  • Maple
    A001263 := (n,k)->binomial(n-1,k-1)*binomial(n,k-1)/k;
    a:=proc(n,k) option remember; local i; if k=1 or k=n then 1 else add(binomial(n+i-1, 2*k-2)*a(k-1,i),i=1..k-1); fi; end:
    # Alternatively, as a (0,0)-based triangle:
    R := n -> simplify(hypergeom([-n, -n-1], [2], x)): Trow := n -> seq(coeff(R(n,x),x,j), j=0..n): seq(Trow(n), n=0..9); # Peter Luschny, Mar 19 2018
  • Mathematica
    T[n_, k_] := If[k==0, 0, Binomial[n-1, k-1] Binomial[n, k-1] / k];
    Flatten[Table[Binomial[n-1,k-1] Binomial[n,k-1]/k,{n,15},{k,n}]] (* Harvey P. Dale, Feb 29 2012 *)
    TRow[n_] := CoefficientList[Hypergeometric2F1[1 - n, -n, 2, x], x];
    Table[TRow[n], {n, 1, 11}] // Flatten (* Peter Luschny, Mar 19 2018 *)
    aot[n_]:=If[n==1,{{}},Join@@Table[Tuples[aot/@c],{c,Join@@Permutations/@IntegerPartitions[n-1]}]];
    Table[Length[Select[aot[n],Length[Position[#,{}]]==k&]],{n,2,9},{k,1,n-1}] (* Gus Wiseman, Jan 23 2023 *)
    T[1, 1] := 1; T[n_, k_]/;1<=k<=n := T[n, k] = (2n/k-1) T[n-1,k-1] + T[n-1, k]; T[n_, k_] := 0; Flatten@Table[T[n, k], {n, 1, 11}, {k, 1, n}] (* Oliver Seipel, Dec 31 2024 *)
  • PARI
    {a(n, k) = if(k==0, 0, binomial(n-1, k-1) * binomial(n, k-1) / k)};
    
  • PARI
    {T(n,k)=polcoeff(polcoeff(exp(sum(m=1,n,sum(j=0,m,binomial(m,j)^2*y^j)*x^m/m) +O(x^(n+1))),n,x),k,y)} \\ Paul D. Hanna, Oct 13 2010
    
  • Sage
    @CachedFunction
    def T(n, k):
        if k == n or k == 1: return 1
        if k <= 0 or k > n: return 0
        return binomial(n, 2) * (T(n-1, k)/((n-k)*(n-k+1)) + T(n-1, k-1)/(k*(k-1)))
    for n in (1..9): print([T(n, k) for k in (1..n)])  # Peter Luschny, Oct 28 2014
    

Formula

a(n, k) = C(n-1, k-1)*C(n, k-1)/k for k!=0; a(n, 0)=0.
Triangle equals [0, 1, 0, 1, 0, 1, ...] DELTA [1, 0, 1, 0, 1, 0, 1, 0, ...] where DELTA is Deléham's operator defined in A084938.
0Mike Zabrocki, Aug 26 2004
T(n, k) = C(n, k)*C(n-1, k-1) - C(n, k-1)*C(n-1, k) (determinant of a 2 X 2 subarray of Pascal's triangle A007318). - Gerald McGarvey, Feb 24 2005
T(n, k) = binomial(n-1, k-1)^2 - binomial(n-1, k)*binomial(n-1, k-2). - David Callan, Nov 02 2005
a(n,k) = C(n,2) (a(n-1,k)/((n-k)*(n-k+1)) + a(n-1,k-1)/(k*(k-1))) a(n,k) = C(n,k)*C(n,k-1)/n. - Mitch Harris, Jul 06 2006
Central column = A000891, (2n)!*(2n+1)! / (n!*(n+1)!)^2. - Zerinvary Lajos, Oct 29 2006
G.f.: (1-x*(1+y)-sqrt((1-x*(1+y))^2-4*y*x^2))/(2*x) = Sum_{n>0, k>0} a(n, k)*x^n*y^k.
From Peter Bala, Oct 22 2008: (Start)
Relation with Jacobi polynomials of parameter (1,1):
Row n+1 generating polynomial equals 1/(n+1)*x*(1-x)^n*Jacobi_P(n,1,1,(1+x)/(1-x)). It follows that the zeros of the Narayana polynomials are all real and nonpositive, as noted above. O.g.f for column k+2: 1/(k+1) * y^(k+2)/(1-y)^(k+3) * Jacobi_P(k,1,1,(1+y)/(1-y)). Cf. A008459.
T(n+1,k) is the number of walks of n unit steps on the square lattice (i.e., each step in the direction either up (U), down (D), right (R) or left (L)) starting from the origin and finishing at lattice points on the x axis and which remain in the upper half-plane y >= 0 [Guy]. For example, T(4,3) = 6 counts the six walks RRL, LRR, RLR, UDL, URD and RUD, from the origin to the lattice point (1,0), each of 3 steps. Compare with tables A145596 - A145599.
Define a functional I on formal power series of the form f(x) = 1 + ax + bx^2 + ... by the following iterative process. Define inductively f^(1)(x) = f(x) and f^(n+1)(x) = f(x*f^(n)(x)) for n >= 1. Then set I(f(x)) = lim_{n -> infinity} f^(n)(x) in the x-adic topology on the ring of formal power series; the operator I may also be defined by I(f(x)) := 1/x*series reversion of x/f(x).
The o.g.f. for this array is I(1 + t*x + t*x^2 + t*x^3 + ...) = 1 + t*x + (t + t^2)*x^2 + (t + 3*t^2 + t^3)*x^3 + ... = 1/(1 - x*t/(1 - x/(1 - x*t/(1 - x/(1 - ...))))) (as a continued fraction). Cf. A108767, A132081 and A141618. (End)
G.f.: 1/(1-x-xy-x^2y/(1-x-xy-x^2y/(1-... (continued fraction). - Paul Barry, Sep 28 2010
E.g.f.: exp((1+y)x)*Bessel_I(1,2*sqrt(y)x)/(sqrt(y)*x). - Paul Barry, Sep 28 2010
G.f.: A(x,y) = exp( Sum_{n>=1} [Sum_{k=0..n} C(n,k)^2*y^k] * x^n/n ). - Paul D. Hanna, Oct 13 2010
With F(x,t) = (1-(1+t)*x-sqrt(1-2*(1+t)*x+((t-1)*x)^2))/(2*x) an o.g.f. in x for the Narayana polynomials in t, G(x,t) = x/(t+(1+t)*x+x^2) is the compositional inverse in x. Consequently, with H(x,t) = 1/ (dG(x,t)/dx) = (t+(1+t)*x+x^2)^2 / (t-x^2), the n-th Narayana polynomial in t is given by (1/n!)*((H(x,t)*D_x)^n)x evaluated at x=0, i.e., F(x,t) = exp(x*H(u,t)*D_u)u, evaluated at u = 0. Also, dF(x,t)/dx = H(F(x,t),t). - Tom Copeland, Sep 04 2011
With offset 0, A001263 = Sum_{j>=0} A132710^j / A010790(j), a normalized Bessel fct. May be represented as the Pascal matrix A007318, n!/[(n-k)!*k!], umbralized with b(n)=A002378(n) for n>0 and b(0)=1: A001263(n,k)= b.(n!)/{b.[(n-k)!]*b.(k!)} where b.(n!) = b(n)*b(n-1)...*b(0), a generalized factorial (see example). - Tom Copeland, Sep 21 2011
With F(x,t) = {1-(1-t)*x-sqrt[1-2*(1+t)*x+[(t-1)*x]^2]}/2 a shifted o.g.f. in x for the Narayana polynomials in t, G(x,t)= x/[t-1+1/(1-x)] is the compositional inverse in x. Therefore, with H(x,t)=1/(dG(x,t)/dx)=[t-1+1/(1-x)]^2/{t-[x/(1-x)]^2}, (see A119900), the (n-1)-th Narayana polynomial in t is given by (1/n!)*((H(x,t)*d/dx)^n)x evaluated at x=0, i.e., F(x,t) = exp(x*H(u,t)*d/du) u, evaluated at u = 0. Also, dF(x,t)/dx = H(F(x,t),t). - Tom Copeland, Sep 30 2011
T(n,k) = binomial(n-1,k-1)*binomial(n+1,k)-binomial(n,k-1)*binomial(n,k). - Philippe Deléham, Nov 05 2011
A166360(n-k) = T(n,k) mod 2. - Reinhard Zumkeller, Oct 10 2013
Damped sum of a column, in leading order: lim_{d->0} d^(2k-1) Sum_{N>=k} T(N,k)(1-d)^N=Catalan(n). - Joachim Wuttke, Sep 11 2014
Multiplying the n-th column by n! generates the revert of the unsigned Lah numbers, A089231. - Tom Copeland, Jan 07 2016
Row polynomials: (x - 1)^(n+1)*(P(n+1,(1 + x)/(x - 1)) - P(n-1,(1 + x)/(x - 1)))/((4*n + 2)), n = 1,2,... and where P(n,x) denotes the n-th Legendre polynomial. - Peter Bala, Mar 03 2017
The coefficients of the row polynomials R(n, x) = hypergeom([-n,-n-1], [2], x) generate the triangle based in (0,0). - Peter Luschny, Mar 19 2018
Multiplying the n-th diagonal by n!, with the main diagonal n=1, generates the Lah matrix A105278. With G equal to the infinitesimal generator of A132710, the Narayana triangle equals Sum_{n >= 0} G^n/((n+1)!*n!) = (sqrt(G))^(-1) * I_1(2*sqrt(G)), where G^0 is the identity matrix and I_1(x) is the modified Bessel function of the first kind of order 1. (cf. Sep 21 2011 formula also.) - Tom Copeland, Sep 23 2020
T(n,k) = T(n,k-1)*C(n-k+2,2)/C(k,2). - Yuchun Ji, Dec 21 2020
From Sergii Voloshyn, Nov 25 2024: (Start)
G.f.: F(x,y) = (1-x*(1+y)-sqrt((1-x*(1+y))^2-4*y*x^2))/(2*x) is the solution of the differential equation x^3 * d^2(x*F(x,y))/dx^2 = y * d^2(x*F(x,y))/dy^2.
Let E be the operator x*D*D, where D denotes the derivative operator d/dx. Then (1/(n! (1 + n)!)) * E^n(x/(1 - x)) = (row n generating polynomial)/(1 - x)^(2*n+1) = Sum_{k >= 0} C(n-1, k-1)*C(n, k-1)/k*x^k. For example, when n = 4 we have (1/4!/5!)*E^3(x/(1 - x)) = x (1 + 6 x + 6 x^2 + x^3)/(1 - x)^9. (End)

Extensions

Deleted certain dangerous or potentially dangerous links. - N. J. A. Sloane, Jan 30 2021

A001333 Pell-Lucas numbers: numerators of continued fraction convergents to sqrt(2).

Original entry on oeis.org

1, 1, 3, 7, 17, 41, 99, 239, 577, 1393, 3363, 8119, 19601, 47321, 114243, 275807, 665857, 1607521, 3880899, 9369319, 22619537, 54608393, 131836323, 318281039, 768398401, 1855077841, 4478554083, 10812186007, 26102926097, 63018038201, 152139002499, 367296043199
Offset: 0

Views

Author

Keywords

Comments

Number of n-step non-selfintersecting paths starting at (0,0) with steps of types (1,0), (-1,0) or (0,1) [Stanley].
Number of n steps one-sided prudent walks with east, west and north steps. - Shanzhen Gao, Apr 26 2011
Number of ternary strings of length n-1 with subwords (0,2) and (2,0) not allowed. - Olivier Gérard, Aug 28 2012
Number of symmetric 2n X 2 or (2n-1) X 2 crossword puzzle grids: all white squares are edge connected; at least 1 white square on every edge of grid; 180-degree rotational symmetry. - Erich Friedman
a(n+1) is the number of ways to put molecules on a 2 X n ladder lattice so that the molecules do not touch each other.
In other words, a(n+1) is the number of independent vertex sets and vertex covers in the n-ladder graph P_2 X P_n. - Eric W. Weisstein, Apr 04 2017
Number of (n-1) X 2 binary arrays with a path of adjacent 1's from top row to bottom row, see A359576. - R. H. Hardin, Mar 16 2002
a(2*n+1) with b(2*n+1) := A000129(2*n+1), n >= 0, give all (positive integer) solutions to Pell equation a^2 - 2*b^2 = -1.
a(2*n) with b(2*n) := A000129(2*n), n >= 1, give all (positive integer) solutions to Pell equation a^2 - 2*b^2 = +1 (see Emerson reference).
Bisection: a(2*n) = T(n,3) = A001541(n), n >= 0 and a(2*n+1) = S(2*n,2*sqrt(2)) = A002315(n), n >= 0, with T(n,x), resp. S(n,x), Chebyshev's polynomials of the first, resp. second kind. See A053120, resp. A049310.
Binomial transform of A077957. - Paul Barry, Feb 25 2003
For n > 0, the number of (s(0), s(1), ..., s(n)) such that 0 < s(i) < 4 and |s(i) - s(i-1)| <= 1 for i = 1,2,...,n, s(0) = 2, s(n) = 2. - Herbert Kociemba, Jun 02 2004
For n > 1, a(n) corresponds to the longer side of a near right-angled isosceles triangle, one of the equal sides being A000129(n). - Lekraj Beedassy, Aug 06 2004
Exponents of terms in the series F(x,1), where F is determined by the equation F(x,y) = xy + F(x^2*y,x). - Jonathan Sondow, Dec 18 2004
Number of n-words from the alphabet A={0,1,2} which two neighbors differ by at most 1. - Fung Cheok Yin (cheokyin_restart(AT)yahoo.com.hk), Aug 30 2006
Consider the mapping f(a/b) = (a + 2b)/(a + b). Taking a = b = 1 to start with and carrying out this mapping repeatedly on each new (reduced) rational number gives the following sequence 1/1, 3/2, 7/5, 17/12, 41/29, ... converging to 2^(1/2). Sequence contains the numerators. - Amarnath Murthy, Mar 22 2003 [Amended by Paul E. Black (paul.black(AT)nist.gov), Dec 18 2006]
Odd-indexed prime numerators are prime RMS numbers (A140480) and also NSW primes (A088165). - Ctibor O. Zizka, Aug 13 2008
The intermediate convergents to 2^(1/2) begin with 4/3, 10/7, 24/17, 58/41; essentially, numerators=A052542 and denominators here. - Clark Kimberling, Aug 26 2008
Equals right border of triangle A143966. Starting (1, 3, 7, ...) equals INVERT transform of (1, 2, 2, 2, ...) and row sums of triangle A143966. - Gary W. Adamson, Sep 06 2008
Inverse binomial transform of A006012; Hankel transform is := [1, 2, 0, 0, 0, 0, 0, 0, 0, ...]. - Philippe Deléham, Dec 04 2008
From Charlie Marion, Jan 07 2009: (Start)
In general, denominators, a(k,n) and numerators, b(k,n), of continued fraction convergents to sqrt((k+1)/k) may be found as follows:
let a(k,0) = 1, a(k,1) = 2k; for n>0, a(k,2n) = 2*a(k,2n-1) + a(k,2n-2) and a(k,2n+1) = (2k)*a(k,2n) + a(k,2n-1);
let b(k,0) = 1, b(k,1) = 2k+1; for n>0, b(k,2n) = 2*b(k,2n-1) + b(k,2n-2) and b(k,2n+1) = (2k)*b(k,2n) + b(k,2n-1).
For example, the convergents to sqrt(2/1) start 1/1, 3/2, 7/5, 17/12, 41/29.
In general, if a(k,n) and b(k,n) are the denominators and numerators, respectively, of continued fraction convergents to sqrt((k+1)/k) as defined above, then
k*a(k,2n)^2 - a(k,2n-1)*a(k,2n+1) = k = k*a(k,2n-2)*a(k,2n) - a(k,2n-1)^2 and
b(k,2n-1)*b(k,2n+1) - k*b(k,2n)^2 = k+1 = b(k,2n-1)^2 - k*b(k,2n-2)*b(k,2n);
for example, if k=1 and n=3, then b(1,n)=a(n+1) and
1*a(1,6)^2 - a(1,5)*a(1,7) = 1*169^2 - 70*408 = 1;
1*a(1,4)*a(1,6) - a(1,5)^2 = 1*29*169 - 70^2 = 1;
b(1,5)*b(1,7) - 1*b(1,6)^2 = 99*577 - 1*239^2 = 2;
b(1,5)^2 - 1*b(1,4)*b(1,6) = 99^2 - 1*41*239 = 2.
(End)
This sequence occurs in the lower bound of the order of the set of equivalent resistances of n equal resistors combined in series and in parallel (A048211). - Sameen Ahmed Khan, Jun 28 2010
Let M = a triangle with the Fibonacci series in each column, but the leftmost column is shifted upwards one row. A001333 = lim_{n->infinity} M^n, the left-shifted vector considered as a sequence. - Gary W. Adamson, Jul 27 2010
a(n) is the number of compositions of n when there are 1 type of 1 and 2 types of other natural numbers. - Milan Janjic, Aug 13 2010
Equals the INVERTi transform of A055099. - Gary W. Adamson, Aug 14 2010
From L. Edson Jeffery, Apr 04 2011: (Start)
Let U be the unit-primitive matrix (see [Jeffery])
U = U_(8,2) = (0 0 1 0)
(0 1 0 1)
(1 0 2 0)
(0 2 0 1).
Then a(n) = (1/4)*Trace(U^n). (See also A084130, A006012.)
(End)
For n >= 1, row sums of triangle
m/k.|..0.....1.....2.....3.....4.....5.....6.....7
==================================================
.0..|..1
.1..|..1.....2
.2..|..1.....2.....4
.3..|..1.....4.....4.....8
.4..|..1.....4....12.....8....16
.5..|..1.....6....12....32....16....32
.6..|..1.....6....24....32....80....32....64
.7..|..1.....8....24....80....80...192....64...128
which is the triangle for numbers 2^k*C(m,k) with duplicated diagonals. - Vladimir Shevelev, Apr 12 2012
a(n) is also the number of ways to place k non-attacking wazirs on a 2 X n board, summed over all k >= 0 (a wazir is a leaper [0,1]). - Vaclav Kotesovec, May 08 2012
The sequences a(n) and b(n) := A000129(n) are entries of powers of the special case of the Brahmagupta Matrix - for details see Suryanarayan's paper. Further, as Suryanarayan remark, if we set A = 2*(a(n) + b(n))*b(n), B = a(n)*(a(n) + 2*b(n)), C = a(n)^2 + 2*a(n)*b(n) + 2*b(n)^2 we obtain integral solutions of the Pythagorean relation A^2 + B^2 = C^2, where A and B are consecutive integers. - Roman Witula, Jul 28 2012
Pisano period lengths: 1, 1, 8, 4, 12, 8, 6, 4, 24, 12, 24, 8, 28, 6, 24, 8, 16, 24, 40, 12, .... - R. J. Mathar, Aug 10 2012
This sequence and A000129 give the diagonal numbers described by Theon of Smyrna. - Sture Sjöstedt, Oct 20 2012
a(n) is the top left entry of the n-th power of any of the following six 3 X 3 binary matrices: [1, 1, 1; 1, 1, 1; 1, 0, 0] or [1, 1, 1; 1, 1, 0; 1, 1, 0] or [1, 1, 1; 1, 0, 1; 1, 1, 0] or [1, 1, 1; 1, 1, 0; 1, 0, 1] or [1, 1, 1; 1, 0, 1; 1, 0, 1] or [1, 1, 1; 1, 0, 0; 1, 1, 1]. - R. J. Mathar, Feb 03 2014
If p is prime, a(p) == 1 (mod p) (compare with similar comment for A000032). - Creighton Dement, Oct 11 2005, modified by Davide Colazingari, Jun 26 2016
a(n) = A000129(n) + A000129(n-1), where A000129(n) is the n-th Pell Number; e.g., a(6) = 99 = A000129(6) + A000129(5) = 70 + 29. Hence the sequence of fractions has the form 1 + A000129(n-1)/A000129(n), and the ratio A000129(n-1)/A000129(n)converges to sqrt(2) - 1. - Gregory L. Simay, Nov 30 2018
For n > 0, a(n+1) is the length of tau^n(1) where tau is the morphism: 1 -> 101, 0 -> 1. See Song and Wu. - Michel Marcus, Jul 21 2020
For n > 0, a(n) is the number of nonisomorphic quasitrivial semigroups with n elements, see Devillet, Marichal, Teheux. A292932 is the number of labeled quasitrivial semigroups. - Peter Jipsen, Mar 28 2021
a(n) is the permanent of the n X n tridiagonal matrix defined in A332602. - Stefano Spezia, Apr 12 2022
From Greg Dresden, May 08 2023: (Start)
For n >= 2, 4*a(n) is the number of ways to tile this T-shaped figure of length n-1 with two colors of squares and one color of domino; shown here is the figure of length 5 (corresponding to n=6), and it has 4*a(6) = 396 different tilings.
_
|| _
|||_|||
|_|
(End)
12*a(n) = number of walks of length n in the cyclic Kautz digraph CK(3,4). - Miquel A. Fiol, Feb 15 2024

Examples

			Convergents are 1, 3/2, 7/5, 17/12, 41/29, 99/70, 239/169, 577/408, 1393/985, 3363/2378, 8119/5741, 19601/13860, 47321/33461, 114243/80782, ... = A001333/A000129.
The 15 3 X 2 crossword grids, with white squares represented by an o:
  ooo ooo ooo ooo ooo ooo ooo oo. o.o .oo o.. .o. ..o oo. .oo
  ooo oo. o.o .oo o.. .o. ..o ooo ooo ooo ooo ooo ooo .oo oo.
G.f. = 1 + x + 3*x^2 + 7*x^3 + 17*x^4 + 41*x^5 + 99*x^6 + 239*x^7 + 577*x^8 + ...
		

References

  • M. R. Bacon and C. K. Cook, Some properties of Oresme numbers and convolutions ..., Fib. Q., 62:3 (2024), 233-240.
  • A. H. Beiler, Recreations in the Theory of Numbers. New York: Dover, pp. 122-125, 1964.
  • John H. Conway and Richard K. Guy, The Book of Numbers, New York: Springer-Verlag, 1996. See p. 204.
  • John Derbyshire, Prime Obsession, Joseph Henry Press, April 2004, see p. 16.
  • J. Devillet, J.-L. Marichal, and B. Teheux, Classifications of quasitrivial semigroups, Semigroup Forum, 100 (2020), 743-764.
  • Maribel Díaz Noguera [Maribel Del Carmen Díaz Noguera], Rigoberto Flores, Jose L. Ramirez, and Martha Romero Rojas, Catalan identities for generalized Fibonacci polynomials, Fib. Q., 62:2 (2024), 100-111.
  • Kenneth Edwards and Michael A. Allen, A new combinatorial interpretation of the Fibonacci numbers squared, Part II, Fib. Q., 58:2 (2020), 169-177.
  • R. P. Grimaldi, Ternary strings with no consecutive 0's and no consecutive 1's, Congressus Numerantium, 205 (2011), 129-149.
  • Jan Gullberg, Mathematics from the Birth of Numbers, W. W. Norton & Co., NY & London, 1997, §8.5 The Fibonacci and Related Sequences, p. 288.
  • A. F. Horadam, R. P. Loh, and A. G. Shannon, Divisibility properties of some Fibonacci-type sequences, pp. 55-64 of Combinatorial Mathematics VI (Armidale 1978), Lect. Notes Math. 748, 1979.
  • Thomas Koshy, Pell and Pell-Lucas Numbers with Applications, Springer, New York, 2014.
  • Kin Y. Li, Math Problem Book I, 2001, p. 24, Problem 159.
  • I. Niven and H. S. Zuckerman, An Introduction to the Theory of Numbers. 2nd ed., Wiley, NY, 1966, p. 102, Problem 10.
  • J. Roberts, Lure of the Integers, Math. Assoc. America, 1992, p. 224.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
  • R. P. Stanley, Enumerative Combinatorics, Volume 1 (1986), p. 203, Example 4.1.2.
  • A. Tarn, Approximations to certain square roots and the series of numbers connected therewith, Mathematical Questions and Solutions from the Educational Times, 1 (1916), 8-12.
  • R. C. Tilley et al., The cell growth problem for filaments, Proc. Louisiana Conf. Combinatorics, ed. R. C. Mullin et al., Baton Rouge, 1970, 310-339.
  • David Wells, The Penguin Dictionary of Curious and Interesting Numbers. Penguin Books, NY, 1986, Revised edition 1987, p. 34.

Crossrefs

For denominators see A000129.
See A040000 for the continued fraction expansion of sqrt(2).
See also A078057 which is the same sequence without the initial 1.
Cf. also A002203, A152113.
Row sums of unsigned Chebyshev T-triangle A053120. a(n)= A054458(n, 0) (first column of convolution triangle).
Row sums of A140750, A160756, A135837.
Equals A034182(n-1) + 2 and A084128(n)/2^n. First differences of A052937. Partial sums of A052542. Pairwise sums of A048624. Bisection of A002965.
The following sequences (and others) belong to the same family: A001333, A000129, A026150, A002605, A046717, A015518, A084057, A063727, A002533, A002532, A083098, A083099, A083100, A015519.
Second row of the array in A135597.
Cf. A055099.
Cf. A028859, A001906 / A088305, A033303, A000225, A095263, A003945, A006356, A002478, A214260, A001911 and A000217 for other restricted ternary words.
Cf. Triangle A106513 (alternating row sums).
Equals A293004 + 1.
Cf. A033539, A332602, A086395 (subseq. of primes).

Programs

  • Haskell
    a001333 n = a001333_list !! n
    a001333_list = 1 : 1 : zipWith (+)
                           a001333_list (map (* 2) $ tail a001333_list)
    -- Reinhard Zumkeller, Jul 08 2012
    
  • Magma
    [n le 2 select 1 else 2*Self(n-1)+Self(n-2): n in [1..35]]; // Vincenzo Librandi, Nov 10 2018
    
  • Maple
    A001333 := proc(n) option remember; if n=0 then 1 elif n=1 then 1 else 2*procname(n-1)+procname(n-2) fi end;
    Digits := 50; A001333 := n-> round((1/2)*(1+sqrt(2))^n);
    with(numtheory): cf := cfrac (sqrt(2),1000): [seq(nthnumer(cf,i), i=0..50)];
    a:= n-> (M-> M[2, 1]+M[2, 2])(<<2|1>, <1|0>>^n):
    seq(a(n), n=0..33);  # Alois P. Heinz, Aug 01 2008
    A001333List := proc(m) local A, P, n; A := [1,1]; P := [1,1];
    for n from 1 to m - 2 do P := ListTools:-PartialSums([op(A), P[-2]]);
    A := [op(A), P[-1]] od; A end: A001333List(32); # Peter Luschny, Mar 26 2022
  • Mathematica
    Insert[Table[Numerator[FromContinuedFraction[ContinuedFraction[Sqrt[2], n]]], {n, 1, 40}], 1, 1] (* Stefan Steinerberger, Apr 08 2006 *)
    Table[((1 - Sqrt[2])^n + (1 + Sqrt[2])^n)/2, {n, 0, 29}] // Simplify (* Robert G. Wilson v, May 02 2006 *)
    a[0] = 1; a[1] = 1; a[n_] := a[n] = 2a[n - 1] + a[n - 2]; Table[a@n, {n, 0, 29}] (* Robert G. Wilson v, May 02 2006 *)
    Table[ MatrixPower[{{1, 2}, {1, 1}}, n][[1, 1]], {n, 0, 30}] (* Robert G. Wilson v, May 02 2006 *)
    a=c=0;t={b=1}; Do[c=a+b+c; AppendTo[t,c]; a=b;b=c,{n,40}]; t (* Vladimir Joseph Stephan Orlovsky, Mar 23 2009 *)
    LinearRecurrence[{2, 1}, {1, 1}, 40] (* Vladimir Joseph Stephan Orlovsky, Mar 23 2009 *)
    Join[{1}, Numerator[Convergents[Sqrt[2], 30]]] (* Harvey P. Dale, Aug 22 2011 *)
    Table[(-I)^n ChebyshevT[n, I], {n, 10}] (* Eric W. Weisstein, Apr 04 2017 *)
    CoefficientList[Series[(-1 + x)/(-1 + 2 x + x^2), {x, 0, 20}], x] (* Eric W. Weisstein, Sep 21 2017 *)
    Table[Sqrt[(ChebyshevT[n, 3] + (-1)^n)/2], {n, 0, 20}] (* Eric W. Weisstein, Apr 17 2018 *)
  • PARI
    {a(n) = if( n<0, (-1)^n, 1) * contfracpnqn( vector( abs(n), i, 1 + (i>1))) [1, 1]}; /* Michael Somos, Sep 02 2012 */
    
  • PARI
    {a(n) = polchebyshev(n, 1, I) / I^n}; /* Michael Somos, Sep 02 2012 */
    
  • PARI
    a(n) = real((1 + quadgen(8))^n); \\ Michel Marcus, Mar 16 2021
    
  • PARI
    { for (n=0, 4000, a=contfracpnqn(vector(n, i, 1+(i>1)))[1, 1]; if (a > 10^(10^3 - 6), break); write("b001333.txt", n, " ", a); ); } \\ Harry J. Smith, Jun 12 2009
    
  • Python
    from functools import cache
    @cache
    def a(n): return 1 if n < 2 else 2*a(n-1) + a(n-2)
    print([a(n) for n in range(32)]) # Michael S. Branicky, Nov 13 2022
  • Sage
    from sage.combinat.sloane_functions import recur_gen2
    it = recur_gen2(1,1,2,1)
    [next(it) for i in range(30)] ## Zerinvary Lajos, Jun 24 2008
    
  • Sage
    [lucas_number2(n,2,-1)/2 for n in range(0, 30)] # Zerinvary Lajos, Apr 30 2009
    

Formula

a(n) = A055642(A125058(n)). - Reinhard Zumkeller, Feb 02 2007
a(n) = 2a(n-1) + a(n-2);
a(n) = ((1-sqrt(2))^n + (1+sqrt(2))^n)/2.
a(n)+a(n+1) = 2 A000129(n+1). 2*a(n) = A002203(n).
G.f.: (1 - x) / (1 - 2*x - x^2) = 1 / (1 - x / (1 - 2*x / (1 + x))). - Simon Plouffe in his 1992 dissertation.
A000129(2n) = 2*A000129(n)*a(n). - John McNamara, Oct 30 2002
a(n) = (-i)^n * T(n, i), with T(n, x) Chebyshev's polynomials of the first kind A053120 and i^2 = -1.
a(n) = a(n-1) + A052542(n-1), n>1. a(n)/A052542(n) converges to sqrt(1/2). - Mario Catalani (mario.catalani(AT)unito.it), Apr 29 2003
E.g.f.: exp(x)cosh(x*sqrt(2)). - Paul Barry, May 08 2003
a(n) = Sum_{k=0..floor(n/2)} binomial(n, 2k)2^k. - Paul Barry, May 13 2003
For n > 0, a(n)^2 - (1 + (-1)^(n))/2 = Sum_{k=0..n-1} ((2k+1)*A001653(n-1-k)); e.g., 17^2 - 1 = 288 = 1*169 + 3*29 + 5*5 + 7*1; 7^2 = 49 = 1*29 + 3*5 + 5*1. - Charlie Marion, Jul 18 2003
a(n+2) = A078343(n+1) + A048654(n). - Creighton Dement, Jan 19 2005
a(n) = A000129(n) + A000129(n-1) = A001109(n)/A000129(n) = sqrt(A001110(n)/A000129(n)^2) = ceiling(sqrt(A001108(n))). - Henry Bottomley, Apr 18 2000
Also the first differences of A000129 (the Pell numbers) because A052937(n) = A000129(n+1) + 1. - Graeme McRae, Aug 03 2006
a(n) = Sum_{k=0..n} A122542(n,k). - Philippe Deléham, Oct 08 2006
For another recurrence see A000129.
a(n) = Sum_{k=0..n} A098158(n,k)*2^(n-k). - Philippe Deléham, Dec 26 2007
a(n) = upper left and lower right terms of [1,1; 2,1]^n. - Gary W. Adamson, Mar 12 2008
If p[1]=1, and p[i]=2, (i>1), and if A is Hessenberg matrix of order n defined by: A[i,j]=p[j-i+1], (i<=j), A[i,j]=-1, (i=j+1), and A[i,j]=0 otherwise. Then, for n>=1, a(n)=det A. - Milan Janjic, Apr 29 2010
For n>=2, a(n)=F_n(2)+F_(n+1)(2), where F_n(x) is Fibonacci polynomial (cf. A049310): F_n(x) = Sum_{i=0..floor((n-1)/2)} binomial(n-i-1,i)x^(n-2*i-1). - Vladimir Shevelev, Apr 13 2012
a(-n) = (-1)^n * a(n). - Michael Somos, Sep 02 2012
Dirichlet g.f.: (PolyLog(s,1-sqrt(2)) + PolyLog(s,1+sqrt(2)))/2. - Ilya Gutkovskiy, Jun 26 2016
a(n) = A000129(n) - A000129(n-1), where A000129(n) is the n-th Pell Number. Hence the continued fraction is of the form 1-(A000129(n-1)/A000129(n)). - Gregory L. Simay, Nov 09 2018
a(n) = (A000129(n+3) + A000129(n-3))/10, n>=3. - Paul Curtz, Jun 16 2021
a(n) = (A000129(n+6) - A000129(n-6))/140, n>=6. - Paul Curtz, Jun 20 2021
a(n) = round((1/2)*sqrt(Product_{k=1..n} 4*(1 + sin(k*Pi/n)^2))), for n>=1. - Greg Dresden, Dec 28 2021
a(n)^2 + a(n+1)^2 = A075870(n+1) = 2*(b(n)^2 + b(n+1)^2) for all n in Z where b(n) := A000129(n). - Michael Somos, Apr 02 2022
a(n) = 2*A048739(n-2)+1. - R. J. Mathar, Feb 01 2024
Sum_{n>=1} 1/a(n) = 1.5766479516393275911191017828913332473... - R. J. Mathar, Feb 05 2024
From Peter Bala, Jul 06 2025: (Start)
G.f.: Sum_{n >= 1} (-1)^(n+1) * x^(n-1) * Product_{k = 1..n} (1 - k*x)/(1 - 3*x + k*x^2).
The following series telescope:
Sum_{n >= 1} (-1)^(n+1)/(a(2*n) + 1/a(2*n)) = 1/4, since 1/(a(2*n) + 1/a(2*n)) = 1/A077445(n) + 1/A077445(n+1).
Sum_{n >= 1} (-1)^(n+1)/(a(2*n+1) - 1/a(2*n+1)) = 1/8, since. 1/(a(2*n+1) - 1/a(2*n+1)) = 1/(4*Pell(2*n)) + 1/(4*Pell(2*n+2)), where Pell(n) = A000129(n).
Sum_{n >= 1} (-1)^(n+1)/(a(2*n+1) + 9/a(2*n+1)) = 1/10, since 1/(a(2*n+1) + 9/a(2*n+1)) = b(n) + b(n+1), where b(n) = A001109(n)/(2*Pell(2*n-1)*Pell(2*n+1)).
Sum_{n >= 1} (-1)^(n+1)/(a(n)*a(n+1)) = 1 - sqrt(2)/2 = A268682, since (-1)^(n+1)/(a(n)*a(n+1)) = Pell(n)/a(n) - Pell(n+1)/a(n+1). (End)

Extensions

Chebyshev comments from Wolfdieter Lang, Jan 10 2003

A000372 Dedekind numbers or Dedekind's problem: number of monotone Boolean functions of n variables, number of antichains of subsets of an n-set, number of elements in a free distributive lattice on n generators, number of Sperner families.

Original entry on oeis.org

2, 3, 6, 20, 168, 7581, 7828354, 2414682040998, 56130437228687557907788, 286386577668298411128469151667598498812366
Offset: 0

Views

Author

Keywords

Comments

A monotone Boolean function is an increasing function from P(S), the set of subsets of S, to {0,1}.
The count of antichains includes the empty antichain which contains no subsets and the antichain consisting of only the empty set.
a(n) is also equal to the number of upsets of an n-set S. A set U of subsets of S is an upset if whenever A is in U and B is a superset of A then B is in U. - W. Edwin Clark, Nov 06 2003
Also the number of simple games with n players in minimal winning form. - Fabián Riquelme, May 29 2011
The unlabeled case is A003182. - Gus Wiseman, Feb 20 2019
From Amiram Eldar, May 28 2021 and Michel Marcus, Apr 07 2023: (Start)
The terms were first calculated by:
a(0)-a(4) - Dedekind (1897)
a(5) - Church (1940)
a(6) - Ward (1946)
a(7) - Church (1965, verified by Berman and Kohler, 1976)
a(8) - Wiedemann (1991)
a(9) - Jäkel (2023)
a(9) - independently computed by Lennart Van Hirtum, Patrick De Causmaecker, Jens Goemaere, Tobias Kenter, Heinrich Riebler, Michael Lass, and Christian Plessl (2023)
(End)

Examples

			a(2)=6 from the antichains {}, {{}}, {{1}}, {{2}}, {{1,2}}, {{1},{2}}.
From _Gus Wiseman_, Feb 20 2019: (Start)
The a(0) = 2 through a(3) = 20 antichains:
  {}    {}     {}        {}
  {{}}  {{}}   {{}}      {{}}
        {{1}}  {{1}}     {{1}}
               {{2}}     {{2}}
               {{12}}    {{3}}
               {{1}{2}}  {{12}}
                         {{13}}
                         {{23}}
                         {{123}}
                         {{1}{2}}
                         {{1}{3}}
                         {{2}{3}}
                         {{1}{23}}
                         {{2}{13}}
                         {{3}{12}}
                         {{12}{13}}
                         {{12}{23}}
                         {{13}{23}}
                         {{1}{2}{3}}
                         {{12}{13}{23}}
(End)
		

References

  • Ian Anderson, Combinatorics of Finite Sets. Oxford Univ. Press, 1987, p. 38.
  • Jorge Luis Arocha, Antichains in ordered sets [in Spanish], Anales del Instituto de Matematicas de la Universidad Nacional Autonoma de Mexico, Vol. 27 (1987), pp. 1-21.
  • Joel Berman and Peter Koehler, Cardinalities of finite distributive lattices, Mitteilungen aus dem Mathematischen Seminar Giessen, Vol. 121 (1976), pp. 103-124.
  • Garrett Birkhoff, Lattice Theory, American Mathematical Society, Colloquium Publications, Vol. 25, 3rd ed., Providence, RI, 1967, p. 63.
  • Louis Comtet, Advanced Combinatorics, Reidel, 1974, p. 273.
  • Michael A. Harrison, Introduction to Switching and Automata Theory, McGraw Hill, NY, 1965, p. 188.
  • Donald E. Knuth, The Art of Computer Programming, Vol. 4A, Section 7.1.1, p. 79.
  • A. D. Korshunov, The number of monotone Boolean functions, Problemy Kibernet, No. 38, (1981), 5-108, 272. MR0640855 (83h:06013)
  • W. F. Lunnon, The IU function: the size of a free distributive lattice, in D. J. A. Welsh, editor, Combinatorial Mathematics and Its Applications. Academic Press, NY, 1971, pp. 173-181.
  • Saburo Muroga, Threshold Logic and Its Applications. Wiley, NY, 1971, pp. 38 and 214.
  • R. A. Obando, On the number of nondegenerate monotone boolean functions of n variables in an n-variable boolean algebra. In preparation.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
  • Douglas B. West, Introduction to Graph Theory, 2nd ed., Prentice-Hall, NJ, 2001, p. 349.

Crossrefs

Programs

  • Mathematica
    nn=5;
    stableSets[u_,Q_]:=If[Length[u]===0,{{}},With[{w=First[u]},Join[stableSets[DeleteCases[u,w],Q],Prepend[#,w]&/@stableSets[DeleteCases[u,r_/;r===w||Q[r,w]||Q[w,r]],Q]]]];
    Table[Length[stableSets[Subsets[Range[n]],SubsetQ]],{n,0,nn}] (* Gus Wiseman, Feb 20 2019 *)
    Table[Total[Boole[Table[UnateQ[BooleanFunction[k, n]], {k, 0, 2^(2^n) - 1}]]], {n, 0, 4}] (* Eric W. Weisstein, Jun 27 2023 *)

Formula

The asymptotics can be found in the Korshunov paper. - Boris Bukh, Nov 07 2003
a(n) = Sum_{k=1..n} binomial(n,k)*A006126(k) + 2, i.e., this sequence is the inverse binomial transform of A006126, plus 2. E.g., a(3) = 3*1 + 3*2 + 1*9 + 2 = 20. - Rodrigo A. Obando (R.Obando(AT)computer.org), Jul 26 2004
From J. M. Aranda, Jun 12 2021: (Start)
a(n) = A132581(2^n) = A132581(2^n-2^m) + A132581(2^n-2^(n-m)) for n >= m >= 0.
a(n) = A132582(3*2^n -1) for n >= 0.
(End)

Extensions

a(8) from D. H. Wiedemann, personal communication, Nov 03 1990
Additional comments from Michael Somos, Jun 10 2002
a(9) from C. Jäkel added by Michel Marcus, Apr 04 2023

A007583 a(n) = (2^(2*n + 1) + 1)/3.

Original entry on oeis.org

1, 3, 11, 43, 171, 683, 2731, 10923, 43691, 174763, 699051, 2796203, 11184811, 44739243, 178956971, 715827883, 2863311531, 11453246123, 45812984491, 183251937963, 733007751851, 2932031007403, 11728124029611, 46912496118443, 187649984473771, 750599937895083
Offset: 0

Views

Author

Keywords

Comments

Let u(k), v(k), w(k) be the 3 sequences defined by u(1)=1, v(1)=0, w(1)=0 and u(k+1)=u(k)+v(k)-w(k), v(k+1)=u(k)-v(k)+w(k), w(k+1)=-u(k)+v(k)+w(k); let M(k)=Max(u(k),v(k),w(k)); then a(n)=M(2n)=M(2n-1). - Benoit Cloitre, Mar 25 2002
Also the number of words of length 2n generated by the two letters s and t that reduce to the identity 1 by using the relations ssssss=1, tt=1 and stst=1. The generators s and t along with the three relations generate the dihedral group D6=C2xD3. - Jamaine Paddyfoot (jay_paddyfoot(AT)hotmail.com) and John W. Layman, Jul 08 2002
Binomial transform of A025192. - Paul Barry, Apr 11 2003
Number of walks of length 2n+1 between two adjacent vertices in the cycle graph C_6. Example: a(1)=3 because in the cycle ABCDEF we have three walks of length 3 between A and B: ABAB, ABCB and AFAB. - Emeric Deutsch, Apr 01 2004
Numbers of the form 1 + Sum_{i=1..m} 2^(2*i-1). - Artur Jasinski, Feb 09 2007
Prime numbers of the form 1+Sum[2^(2n-1)] are in A000979. Numbers x such that 1+Sum[2^(2n-1)] is prime for n=1,2,...,x is A127936. - Artur Jasinski, Feb 09 2007
Related to A024493(6n+1), A131708(6n+3), A024495(6n+5). - Paul Curtz, Mar 27 2008
Let A be the Hessenberg matrix of order n, defined by: A[1,j]=1, A[i,i]:=-6, (i>1), A[i,i-1]=-1, and A[i,j]=0 otherwise. Then, for n>=1, a(n-1)=(-1)^(n-1)*charpoly(A,2). - Milan Janjic, Feb 21 2010
Number of toothpicks in the toothpick structure of A139250 after 2^n stages. - Omar E. Pol, Feb 28 2011
Numbers whose binary representation is "10" repeated (n-1) times with "11" appended on the end, n >= 1. For example 171 = 10101011 (2). - Omar E. Pol, Nov 22 2012
a(n) is the smallest number for which A072219(a(n)) = 2*n+1. - Ramasamy Chandramouli, Dec 22 2012
An Engel expansion of 2 to the base b := 4/3 as defined in A181565, with the associated series expansion 2 = b + b^2/3 + b^3/(3*11) + b^4/(3*11*43) + .... Cf. A007051. - Peter Bala, Oct 29 2013
The positive integer solution (x,y) of 3*x - 2^n*y = 1, n>=0, with smallest x is (a(n/2), 2) if n is even and (a((n-1)/2), 1) if n is odd. - Wolfdieter Lang, Feb 15 2014
The smallest positive number that requires at least n additions and subtractions of powers of 2 to be formed. See Puzzling StackExchange link. - Alexander Cooke Jul 16 2023

References

  • H. W. Gould, Combinatorial Identities, Morgantown, 1972, (1.77), page 10.
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Partial sums of A081294.
Cf. location of records in A007302.

Programs

  • GAP
    List([0..25], n-> (2^(2*n+1) + 1)/3); # G. C. Greubel, Dec 25 2019
  • Haskell
    a007583 = (`div` 3) . (+ 1) . a004171
    -- Reinhard Zumkeller, Jan 09 2013
    
  • Magma
    [(2^(2*n+1) + 1)/3: n in [0..30] ]; // Vincenzo Librandi, Apr 28 2011
    
  • Maple
    a[0]:=1:for n from 1 to 50 do a[n]:=4*a[n-1]-1 od: seq(a[n], n=0..23); # Zerinvary Lajos, Feb 22 2008, with correction by K. Spage, Aug 20 2014
    A007583 := proc(n)
        (2^(2*n+1)+1)/3 ;
    end proc: # R. J. Mathar, Feb 19 2015
  • Mathematica
    (* From Michael De Vlieger, Aug 22 2016 *)
    Table[(2^(2n+1) + 1)/3, {n, 0, 23}]
    Table[1 + 2Sum[4^k, {k, 0, n-1}], {n, 0, 23}]
    NestList[4# -1 &, 1, 23]
    Table[Sum[Binomial[n+k, 2k]/2^(k-n), {k, 0, n}], {n, 0, 23}]
    CoefficientList[Series[(1-2x)/(1-5x+4x^2), {x, 0, 23}], x] (* End *)
  • PARI
    a(n)=sum(k=-n\3,n\3,binomial(2*n+1,n+1+3*k))
    
  • PARI
    a=1; for(n=1,23, print1(a,", "); a=bitor(a,3*a)) \\ K. Spage, Aug 20 2014
    
  • PARI
    Vec((1-2*x)/(1-5*x+4*x^2) + O(x^30)) \\ Altug Alkan, Dec 08 2015
    
  • PARI
    apply( {A007583(n)=2<<(2*n)\/3}, [0..25]) \\ M. F. Hasler, Nov 30 2021
    
  • Sage
    [(2^(2*n+1) + 1)/3 for n in (0..25)] # G. C. Greubel, Dec 25 2019
    

Formula

a(n) = 2*A002450(n) + 1.
From Wolfdieter Lang, Apr 24 2001: (Start)
a(n) = Sum_{m = 0..n} A060920(n, m) = A002450(n+1) - 2*A002450(n).
G.f.: (1-2*x)/(1-5*x+4*x^2). (End)
a(n) = Sum_{k = 0..n} binomial(n+k, 2*k)/2^(k - n).
a(n) = 4*a(n-1) - 1, n > 0.
From Paul Barry, Mar 17 2003: (Start)
a(n) = 1 + 2*Sum_{k = 0..n-1} 4^k;
a(n) = A001045(2n+1). (End)
a(n) = A020988(n-1) + 1 = A039301(n+1) - 1 = A083584(n-1) + 2. - Ralf Stephan, Jun 14 2003
a(0) = 1; a(n+1) = a(n) * 4 - 1. - Regis Decamps (decamps(AT)users.sf.net), Feb 04 2004 (correction to lead index by K. Spage, Aug 20 2014)
a(n) = Sum_{i + j + k = n; 0 <= i, j, k <= n} (n+k)!/i!/j!/(2*k)!. - Benoit Cloitre, Mar 25 2004
a(n) = 5*a(n-1) - 4*a(n-2). - Emeric Deutsch, Apr 01 2004
a(n) = 4^n - A001045(2*n). - Paul Barry, Apr 17 2004
a(n) = 2*(A001045(n))^2 + (A001045(n+1))^2. - Paul Barry, Jul 15 2004
a(n) = left and right terms in M^n * [1 1 1] where M = the 3X3 matrix [1 1 1 / 1 3 1 / 1 1 1]. M^n * [1 1 1] = [a(n) A002450(n+1) a(n)] E.g. a(3) = 43 since M^n * [1 1 1] = [43 85 43] = [a(3) A002450(4) a(3)]. - Gary W. Adamson, Dec 18 2004
a(n) = A072197(n) - A020988(n). - Creighton Dement, Dec 31 2004
a(n) = A139250(2^n). - Omar E. Pol, Feb 28 2011
a(n) = A193652(2*n+1). - Reinhard Zumkeller, Aug 08 2011
a(n) = Sum_{k = -floor(n/3)..floor(n/3)} binomial(2*n, n+3*k)/2. - Mircea Merca, Jan 28 2012
a(n) = 2^(2*(n+1)) - A072197(n). - Vladimir Pletser, Apr 12 2014
a(n) == 2*n + 1 (mod 3). Indeed, from Regis Decamps' formula (Feb 04 2004) we have a(i+1) - a(i) == -1 (mod 3), i= 0, 1, ..., n - 1. Summing, we have a(n) - 1 == -n (mod 3), and the formula follows. - Vladimir Shevelev, May 20 2015
For n > 0 a(n) = A133494(0) + 2 * (A133494(n) + Sum_{x = 1..n - 1}Sum_{k = 0..x - 1}(binomial(x - 1, k)*(A133494(k+1) + A133494(n-x+k)))). - J. Conrad, Dec 06 2015
a(n) = Sum_{k = 0..2n} (-2)^k == 1 + Sum_{k = 1..n} 2^(2k-1). - Bob Selcoe, Aug 21 2016
E.g.f.: (1 + 2*exp(3*x))*exp(x)/3. - Ilya Gutkovskiy, Aug 21 2016
A075680(a(n)) = 1, for n > 0. - Ralf Stephan, Jun 17 2025

A006355 Number of binary vectors of length n containing no singletons.

Original entry on oeis.org

1, 0, 2, 2, 4, 6, 10, 16, 26, 42, 68, 110, 178, 288, 466, 754, 1220, 1974, 3194, 5168, 8362, 13530, 21892, 35422, 57314, 92736, 150050, 242786, 392836, 635622, 1028458, 1664080, 2692538, 4356618, 7049156, 11405774, 18454930, 29860704, 48315634
Offset: 0

Views

Author

David M. Bloom

Keywords

Comments

Number of cvtemplates at n-2 letters given <= 2 consecutive consonants or vowels (n >= 4).
Number of (n,2) Freiman-Wyner sequences.
Diagonal sums of the Riordan array ((1-x+x^2)/(1-x), x/(1-x)), A072405 (where this begins 1,0,1,1,1,1,...). - Paul Barry, May 04 2005
Central terms of the triangle in A094570. - Reinhard Zumkeller, Mar 22 2011
Pisano period lengths: 1, 1, 8, 3, 20, 8, 16, 6, 24, 20, 10, 24, 28, 16, 40, 12, 36, 24, 18, 60, ... . - R. J. Mathar, Aug 10 2012
Also the number of matchings in the (n-2)-pan graph for n >= 5. - Eric W. Weisstein, Oct 03 2017
a(n) is the number of bimultus bitstrings of length n. A bitstring is bimultus if each of its 1's possess at least one neighboring 1 and each of its 0's possess at least one neighboring 0. - Steven Finch, May 26 2020

Examples

			a(6)=10 because we have: 000000, 000011, 000111, 001100, 001111, 110000, 110011, 111000, 111100, 111111. - _Geoffrey Critzer_, Jan 26 2014
		

References

  • A. T. Benjamin and J. J. Quinn, Proofs that really count: the art of combinatorial proof, M.A.A. 2003, id. 16, 51.

Crossrefs

Except for initial term, = 2*Fibonacci numbers (A000045).
Essentially the same as A047992, A054886, A055389, A068922, and A090991.
Column 2 in A265584.

Programs

  • Haskell
    a006355 n = a006355_list !! n
    a006355_list = 1 : fib2s where
       fib2s = 0 : map (+ 1) (scanl (+) 1 fib2s)
    -- Reinhard Zumkeller, Mar 20 2013
    
  • Magma
    [1] cat [Lucas(n) - Fibonacci(n): n in [1..50]]; // Vincenzo Librandi, Aug 02 2014
    
  • Maple
    a:= n-> if n=0 then 1 else (Matrix([[2,-2]]). Matrix([[1,1], [1,0]])^n) [1,1] fi: seq(a(n), n=0..38); # Alois P. Heinz, Aug 18 2008
    a := n -> ifelse(n=0, 1, -2*I^n*ChebyshevU(n-2, -I/2)):
    seq(simplify(a(n)), n = 0..38);  # Peter Luschny, Dec 03 2023
  • Mathematica
    Join[{1}, Last[#] - First[#] & /@ Partition[Fibonacci[Range[-1, 40]], 4, 1]] (* Harvey P. Dale, Sep 30 2011 *)
    Join[{1}, LinearRecurrence[{1, 1}, {0, 2}, 38]] (* Jean-François Alcover, Sep 23 2017 *)
    (* Programs from Eric W. Weisstein, Oct 03 2017 *)
    Join[{1}, Table[2 Fibonacci[n], {n, 0, 40}]]
    Join[{1}, 2 Fibonacci[Range[0, 40]]]
    CoefficientList[Series[(1-x+x^2)/(1-x-x^2), {x, 0, 40}], x] (* End *)
  • PARI
    a(n)=if(n,2*fibonacci(n-1),1) \\ Charles R Greathouse IV, Mar 14 2012
    
  • PARI
    my(x='x+O('x^50)); Vec((1-x+x^2)/(1-x-x^2)) \\ Altug Alkan, Nov 01 2015
    
  • SageMath
    def A006355(n): return 2*fibonacci(n-1) - int(n==0)
    print([A006355(n) for n in range(51)]) # G. C. Greubel, Apr 18 2025

Formula

a(n+2) = F(n-1) + F(n+2), for n > 0.
G.f.: (1-x+x^2)/(1-x-x^2). - Paul Barry, May 04 2005
a(n) = A119457(n-1,n-2) for n > 2. - Reinhard Zumkeller, May 20 2006
a(n) = 2*F(n-1) for n > 0, F(n)=A000045(n) and a(0)=1. - Mircea Merca, Jun 28 2012
G.f.: 1 - x + x*Q(0), where Q(k) = 1 + x^2 + (2*k+3)*x - x*(2*k+1 + x)/Q(k+1); (continued fraction). - Sergei N. Gladkovskii, Oct 05 2013
a(n) = A118658(n) - 0^n. - M. F. Hasler, Nov 05 2014
a(n) = 2^(-n)*((1+r)*(1-r)^n - (1-r)*(1+r)^n)/r for n > 0, where r=sqrt(5). - Colin Barker, Jan 28 2017
a(n) = a(n-1) + a(n-2) for n >= 3. - Armend Shabani, Nov 25 2020
E.g.f.: 2*exp(x/2)*(5*cosh(sqrt(5)*x/2) - sqrt(5)*sinh(sqrt(5)*x/2))/5 - 1. - Stefano Spezia, Apr 18 2022
a(n) = F(n-3) + F(n-2) + F(n-1) for n >= 3, where F(n)=A000045(n). - Gergely Földvári, Aug 03 2024

Extensions

Corrected by T. D. Noe, Oct 31 2006

A005578 a(2*n) = 2*a(2*n-1), a(2*n+1) = 2*a(2*n)-1.

Original entry on oeis.org

1, 1, 2, 3, 6, 11, 22, 43, 86, 171, 342, 683, 1366, 2731, 5462, 10923, 21846, 43691, 87382, 174763, 349526, 699051, 1398102, 2796203, 5592406, 11184811, 22369622, 44739243, 89478486, 178956971, 357913942, 715827883, 1431655766, 2863311531, 5726623062, 11453246123
Offset: 0

Views

Author

Keywords

Comments

Might be called the "Arima sequence" after Yoriyuki Arima who in 1769 constructed this sequence as the number of moves of the outer ring in the optimal solution for the Chinese Rings puzzle (baguenaudier). - Andreas M. Hinz, Feb 15 2017
Let u(k), v(k), w(k) be the 3 sequences defined by u(1)=1, v(1)=0, w(1)=0 and u(k+1) = u(k) + v(k), v(k+1) = u(k) + w(k), w(k+1) = v(k) + w(k); let M(k) = Max(u(k), v(k), w(k)); then a(n) = M(n). - Benoit Cloitre, Mar 25 2002
Unimodal analog of Fibonacci numbers: a(n+1) = Sum_{k=0..n/2} A071922(n-k, n-2*k). Based on the observation that F_{n+1} = Sum_{k} binomial (n-k, k). - Michele Dondi (bik.mido(AT)tiscalinet.it), Jun 30 2002
Numbers n at which the length of the symmetric signed digit expansion of n with q=2 (i.e., the length of the representation of n in the (-1,0,1)2 number system) increases. - _Ralf Stephan, Jun 30 2003
Row sums of Riordan array (1/(1-x), x/(1-2*x^2)). - Paul Barry, Apr 24 2005
For n > 0, record-values of A107910: a(n) = A107910(A023548(n)). - Reinhard Zumkeller, May 28 2005
2^(n+1) = 2*a(n) + 2*A001045(n) + A000975(n-1); e.g., 2^6 = 64 = 2*a(5) + 2*A001045(5) + 2*A000975(4) = 2*11 + 2*11 + 2*10. Let a(n), A001045(n) and A000975(n-1) = the legs of a triangle (a, b, c). Then a(n-1), A001045(n-1) and A000975(n-2) = (S-c), (S-b), (S-a), where S = the triangle semiperimeter. Example: a(5), A001045(5) and A000975(4) = triangle (a, b, c) = (11, 11, 10). Then a(4), A001045(4), A000975(3) = (S-c), (S-b), (S-a) = (6, 5, 5). - Gary W. Adamson, Dec 24 2007
a(n) is the number of length-n binary representations of a nonnegative integer that is divisible by 3. The initial digits are allowed to be 0's. a(4) = 6 because we have 0000, 0011, 0110, 1001, 1100, 1111. - Geoffrey Critzer, Jan 13 2014
a(n) is the top left entry of the n-th power of the 3 X 3 matrix [1, 0, 1; 0, 1, 1; 1, 1, 0] or of the 3 X 3 matrix [1, 1, 0; 1, 0, 1; 0, 1, 1]. - R. J. Mathar, Feb 04 2014
With 0 prefixed, this sequence is an autosequence of the first kind because the sequence of first differences A001045 is. Its companion is A052950. - Paul Curtz, Dec 18 2018, edited by M. F. Hasler, Dec 21 2018
Apparently, the sequence gives the distinct values taken by A129761, the first differences of fibbinary numbers. - Rémy Sigrist, Oct 26 2019
The sequence with offset 1 can be generated in three steps starting with A158780. First, put in alternate signs (1, -1, 1, -2, 2, -4, ...) and take the inverse; getting (1, 1, 0, 1, 1, 2, 3, 5, 8, 13, 21, ...). Take the invert transform of the latter, resulting in the sequence. It follows from the inverti transform being 1, 1, 0, 1, 1, 2, 3, ... that (for example), a(9) = 171 = (1, 1, 0, 1, 1, 2, 3, 5, 8) dot (86, 43, 0, 11, 6, 6, 6, 5, 8) = (86 + 43 + 0 + 11 + 6 + 6 + 6 + 5 + 8). A similar procedure is shown in the Aug 08 2019 comment of A006356. - Gary W. Adamson, Feb 04 2022

References

  • R. K. Guy, Graphs and the strong law of small numbers. Graph theory, combinatorics and applications. Vol. 2 (Kalamazoo, MI, 1988), 597-614, Wiley-Intersci. Publ., Wiley, New York, 1991.
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Bisections: A007583 and A047849.
Cf. also A000975, A001045 (first differences), A129761.
Cf. A006356.

Programs

  • GAP
    List([0..40],n->(2^(n+1)+3+(-1)^n)/6); # Muniru A Asiru, Dec 22 2018
    
  • Magma
    [(2^(n+1)+3+(-1)^n)/6: n in [0..40]]; // Vincenzo Librandi, Aug 14 2011
    
  • Maple
    A005578:=-(-1+z+z^2)/((z-1)*(2*z-1)*(z+1)); # Simon Plouffe in his 1992 dissertation
    with(combstruct):ZL0:=S=Prod(Sequence(Prod(a, Sequence(b))), a):ZL1:=Prod(begin_blockP, Z, end_blockP):ZL2:=Prod(begin_blockLR, Z, Sequence(Prod(mu_length, Z), card>=1), end_blockLR): ZL3:=Prod(begin_blockRL, Sequence(Prod(mu_length, Z), card>=1), Z, end_blockRL):Q:=subs([a=Union(ZL3), b=ZL3], ZL0), begin_blockP=Epsilon, end_blockP=Epsilon, begin_blockLR=Epsilon, end_blockLR=Epsilon, begin_blockRL=Epsilon, end_blockRL=Epsilon, mu_length=Epsilon:temp15:=draw([S, {Q}, unlabelled], size=15):seq(count([S, {Q}, unlabelled], size=n), n=2..34); # Zerinvary Lajos, Mar 08 2008
  • Mathematica
    a=0; Table[a=2^n-a;(a/2+1)/2,{n,5!}] (* Vladimir Joseph Stephan Orlovsky, Nov 22 2009 *)
    LinearRecurrence[{2,1,-2}, {1,1,2}, 40] (* G. C. Greubel, Aug 26 2019 *)
  • PARI
    a(n)=(2^(n+1)+3+(-1)^n)/6 \\ Charles R Greathouse IV, Mar 22 2016
    
  • Python
    print([1+2**n//3 for n in range(40)])  # Gennady Eremin, Feb 05 2022
  • Sage
    [(2^(n+1)+3+(-1)^n)/6 for n in (0..40)] # G. C. Greubel, Aug 26 2019
    

Formula

a(n) = ceiling(2^n/3).
a(n) = 1 + floor((2^n)/3) (proof by mathematical induction).
a(n) = 2*a(n-1) + a(n-2) - 2*a(n-3).
From Paul Barry, Jul 20 2003: (Start)
a(n) = A001045(n) + A000035(n+1), where A000035 = (0, 1, 0, 1, ...).
G.f.: (1 - x - x^2)/((1-x^2)*(1-2*x)). [Guy, 1988];
E.g.f.: (exp(2*x) - exp(-x))/3 + cosh(x) = (2*exp(2*x) + 3*exp(x) + exp(-x))/6. (End)
The 30 listed terms are given by a(0)=1, a(1)=1 and, for n > 1, by a(n) = a(n-1) + a(n-2) + Sum_{i=0..n-4} Fibonacci(i)*a(n-4-i). - John W. Layman, Jan 07 2000
a(n) = (2^(n+1) + 3 + (-1)^n)/6. - Vladeta Jovovic, Jul 02 2002
Binomial transform of A001045(n-1)(-1)^n + 0^n/2. - Paul Barry, Apr 28 2004
a(n) = (1 + A001045(n+1))/2. - Paul Barry, Apr 28 2004
a(n) = Sum_{k=0..n} (-1)^k*Sum_{j=0..n-k} (if((j-k) mod 2)=0, binomial(n-k, j), 0). - Paul Barry, Jan 25 2005
Let M = the 6 X 6 adjacency matrix of a benzene ring, (reference): [0,1,0,0,0,1; 1,0,1,0,0,0; 0,1,0,1,0,0; 0,0,1,0,1,0; 0,0,0,1,0,1; 1,0,0,0,1,0]. Then a(n) = leftmost nonzero term of M^n * [1,0,0,0,0,0]. E.g.: a(6) = 22 since M^6 * [1,0,0,0,0,0] = [22,0,21,0,21,0]. - Gary W. Adamson, Jun 14 2006
Starting (1, 2, 3, 6, 11, 22, ...), = row sums of triangle A135229. - Gary W. Adamson, Nov 23 2007
Let T = the 3 X 3 matrix [1,1,0; 1,0,1; 0,1,1]. Then T^n * [1,0,0] = [A005578(n), A001045(n), A000975(n-1)]. - Gary W. Adamson, Dec 24 2007
a(n) = 1 + 2^(n-1) - a(n-1) = a(n-1) + 2*a(n-2) - 1 = a(n-2) + 2^(n-2). - Paul Curtz, Jan 31 2009
a(n) = A023105(n+1) - 1. - Carl Joshua Quines, Jul 17 2019

Extensions

Edited by N. J. A. Sloane, Jun 20 2015
Showing 1-10 of 57 results. Next