cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

User: Kurmang. Aziz. Rashid

Kurmang. Aziz. Rashid's wiki page.

Kurmang. Aziz. Rashid has authored 3 sequences.

A089061 a(0) = 5, a(1) = 7; for n>1, a(n) = a(n-1)+a(n-2)-(2n-2).

Original entry on oeis.org

5, 7, 10, 13, 17, 22, 29, 39, 54, 77, 113, 170, 261, 407, 642, 1021, 1633, 2622, 4221, 6807, 10990, 17757, 28705, 46418, 75077, 121447, 196474, 317869, 514289, 832102, 1346333, 2178375, 3524646, 5702957, 9227537, 14930426, 24157893
Offset: 0

Author

Kurmang. Aziz. Rashid, Dec 02 2003

Keywords

Crossrefs

Programs

  • Mathematica
    RecurrenceTable[{a[0]==5,a[1]==7,a[n]==a[n-1]+a[n-2]-(2n-2)},a,{n,40}] (* or *) LinearRecurrence[{3,-2,-1,1},{5,7,10,13},40] (* Harvey P. Dale, Apr 23 2018 *)

Formula

a(n) = Fibonacci(n+1)+2n+4. - Ralf Stephan, Feb 24 2004

A090698 Primes of the form 2*n^2+1.

Original entry on oeis.org

3, 19, 73, 163, 883, 1153, 1459, 1801, 2179, 2593, 3529, 4051, 8713, 10369, 11251, 15139, 17299, 18433, 19603, 20809, 22051, 30259, 34849, 36451, 46819, 48673, 52489, 62659, 69193, 71443, 80803, 83233, 95923, 103969, 112339, 115201, 130051
Offset: 1

Author

Kurmang. Aziz. Rashid, Dec 20 2003

Keywords

Comments

A prime p can be expressed as either the sum of two squares or the sum of two squares - 1, p = X^2 + Y^2 or p = X^2 + Y^2 - 1, if and only if p is of the form 2*(m^2)+1 where m is either 1 or a multiple of 3.
Conjecture: 2^(a(n)-1) - 3 is not prime. - Vincenzo Librandi, Feb 04 2013.
Primes in A058331. - Vincenzo Librandi, Apr 10 2015

Examples

			19 = 2^2 + 4^2 - 1 = 2*(3^2)+1
73 = 5^2 + 7^2 - 1 = 2*(6^2)+1
163= 8^2 + 10^2 -1 = 2*(9^2)+1
883= 10^2+ 28^2 -1 = 2*(21^2)+1
		

Crossrefs

Programs

Formula

a(n)=2*A089001(n)^2+1 = A000040(A090612(n)).

Extensions

Extended by Ray Chandler, Dec 21 2003

A088981 a(n+2) = a(n+1) + a(n) - (2*n + 1) where a(0)=7, a(1)=11.

Original entry on oeis.org

7, 11, 17, 25, 37, 55, 83, 127, 197, 309, 489, 779, 1247, 2003, 3225, 5201, 8397, 13567, 21931, 35463, 57357, 92781, 150097, 242835, 392887, 635675, 1028513, 1664137, 2692597, 4356679, 7049219, 11405839, 18454997
Offset: 0

Author

Kurmang. Aziz. Rashid, Dec 01 2003

Keywords

References

  • J. Baylis and R. Haggarty, Alice in Numberland, A Student's Guide to the Enjoyment of Higher Mathematics, Macmillan Education 1988.
  • G. Buckwell, Mastering Mathematics, Palgrave Master Series, 2nd Ed. 1997.
  • R. P. C. Forman, Additional Mathematics Pure & Applied, Stanley Thornes, 1989.

Programs

  • Mathematica
    LinearRecurrence[{3,-2,-1,1},{7,11,17,25},40] (* Harvey P. Dale, Jun 08 2018 *)
  • PARI
    a=[7,11];for(n=2,10,a=concat(a,a[#a]+a[#a-1]-2*n+3)); a

Formula

a(n) = (2*alpha^(n+3) - 2*beta^(n+3) + 2*sqrt(5)*n + 3*sqrt(5)) / sqrt(5) where alpha = (1 + sqrt(5)) / 2 and beta = (1 - sqrt(5)) / 2.