cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

User: Jeroen F.J. Laros

Jeroen F.J. Laros's wiki page.

Jeroen F.J. Laros has authored 5 sequences.

A101169 Lengths of successive words (starting with a) under the substitution: {a -> aab, b -> aac, c -> ab}.

Original entry on oeis.org

1, 3, 9, 26, 76, 221, 644, 1875, 5461, 15903, 46314, 134876, 392791, 1143896, 3331289, 9701475, 28252921, 82278978, 239615244, 697814501, 2032195756, 5918219771, 17235212309, 50192888175, 146173193506, 425689839228
Offset: 0

Author

Jeroen F.J. Laros, Jan 22 2005

Keywords

Examples

			a => aab => aabaabaac => aabaabaacaabaabaacaabaabab, thus a(0) = 1, a(1) = 3, a(2) = 9, a(3) = 26.
		

Crossrefs

Programs

  • Maple
    a:= n-> (<<0|1|0>, <0|0|1>, <-1|3|2>>^n. <<0, 1, 3>>)[2,1]:
    seq(a(n), n=0..30);  # Alois P. Heinz, May 06 2011
  • Mathematica
    LinearRecurrence[{2,3,-1},{1,3,9},40] (* Harvey P. Dale, Feb 19 2012 *)

Formula

a(n) = 2*a(n-1) + 3*a(n-2) - a(n-3).
G.f.: -(x+1) / (-x^3+3*x^2+2*x-1).

Extensions

Terms >=1875 by Alois P. Heinz, May 06 2011

A101168 Lengths of successive words (starting with a) under the substitution: {a -> aab, b -> aac, c -> a}.

Original entry on oeis.org

1, 3, 9, 25, 71, 201, 569, 1611, 4561, 12913, 36559, 103505, 293041, 829651, 2348889, 6650121, 18827671, 53304473, 150914409, 427265435, 1209664161, 3424773601, 9696140959, 27451493281, 77720042081, 220039211683, 622970000809, 1763738467065, 4993456147431
Offset: 0

Author

Jeroen F.J. Laros, Jan 22 2005

Keywords

Examples

			a => aab => aabaabaac => aabaabaacaabaabaacaabaaba, thus a(0) = 1, a(1) = 3, a(2) = 9, a(3) = 25.
		

Crossrefs

Programs

  • Maple
    a:= n-> (<<0|1|0>, <0|0|1>, <1|2|2>>^n. <<1, 3, 9>>)[1, 1]:
    seq(a(n), n=0..30);  # Alois P. Heinz, May 06 2011
  • Mathematica
    Length/@SubstitutionSystem[{a->{a,a,b},b->{a,a,c},c->a},{a},15] (* The program generates the first 16 terms of the sequence. To generate more, increase the final ("15") constant. *) (* Harvey P. Dale, Sep 05 2022 *)
  • Maxima
    a(n):=b(n+1);
    b(n):= sum(sum((sum(binomial(j,n+1-m-3*k+2*j) *binomial(k,j), j,0, k)) *sum(binomial(i,m-i) *binomial(k+i-1,k-1),i,ceiling(m/2),m), m,0, n+1-k), k,1,n+1); /* Vladimir Kruchinin, May 05 2011 */

Formula

a(n) = 2*a(n-1) + 2*a(n-2) + a(n-3).
G.f.: (1+x+x^2) / (1-2*x-2*x^2-x^3).
a(n-1) = sum(k=1..n, sum(m=0..n-k, (sum(j=0..k, binomial(j, n-m-3*k+2*j) *binomial(k, j))) *sum(i=ceiling(m/2)..m, binomial(i, m-i)*binomial(k+i-1, k-1)))). - Vladimir Kruchinin, May 05 2011

A101197 Lengths of successive words (starting with a) under the substitution: {a -> aab, b -> aac, c -> b}.

Original entry on oeis.org

1, 3, 9, 25, 71, 199, 561, 1577, 4439, 12487, 35137, 98857, 278151, 782599, 2201937, 6195369, 17431351, 49044935, 137993185, 388258473, 1092406631, 3073602311, 8647907569, 24331808809, 68460135703, 192619882695
Offset: 0

Author

Jeroen F.J. Laros, Jan 22 2005

Keywords

Examples

			a => aab => aabaabaac => aabaabaacaabaabaacaabaabb, thus a(0) = 1, a(1) = 3, a(2) = 9, a(3) = 25.
		

Crossrefs

Pairwise sums of A046672.

Programs

  • Maple
    a:= n-> (<<0|1|0>, <0|0|1>, <-2|3|2>>^n. <<0, 1, 3>>)[2, 1]:
    seq (a(n), n=0..30);  # Alois P. Heinz, May 06 2011
  • Mathematica
    LinearRecurrence[{2,3,-2},{1,3,9},30] (* Harvey P. Dale, Jan 01 2019 *)

Formula

a(n) = 2*a(n-1) + 3*a(n-2) - 2*a(n-3).
G.f.: -(x+1) / (-2*x^3+3*x^2+2*x-1).

Extensions

Terms >=1577 by Alois P. Heinz, May 06 2011

A101400 a(n) = a(n-1) + 2*a(n-2) + a(n-3) - a(n-4).

Original entry on oeis.org

1, 2, 5, 10, 21, 44, 91, 190, 395, 822, 1711, 3560, 7409, 15418, 32085, 66770, 138949, 289156, 601739, 1252230, 2605915, 5422958, 11285279, 23484880, 48872481, 101704562, 211649125, 440445850, 916576181, 1907412444, 3969361531
Offset: 0

Author

Jeroen F.J. Laros, Jan 15 2005

Keywords

Comments

Lengths of successive words (starting with a) under the substitution: {a -> ab, b -> aac, c -> d, d -> b}.

Examples

			a(0) = 1, a(1) = 2, a(2) = 5, a(3) = 10, a(4) = 21, a(5) = 44
		

Crossrefs

Programs

  • GAP
    a:=[1,2,5,10];; for n in [5..35] do a[n]:=a[n-1]+2*a[n-2]+a[n-3]-a[n-4]; od; a; # Muniru A Asiru, Apr 03 2018
  • Magma
    I:=[1,2,5,10]; [n le 4 select I[n] else Self(n-1) + 2*Self(n-2) + Self(n-3) - Self(n-4): n in [1..30]]; // G. C. Greubel, Apr 03 2018
    
  • Magma
    m:=25; R:=PowerSeriesRing(Integers(), m); Coefficients(R!((1+x+x^2)/(1-x-2*x^2-x^3+x^4))); // G. C. Greubel, Apr 03 2018
    
  • Mathematica
    a[0] = 1; a[1] = 2; a[2] = 5; a[3] = 10; a[n_] := a[n] = a[n - 1] + 2a[n - 2] + a[n - 3] - a[n - 4]; Table[ a[n], {n, 0, 30}] (* Robert G. Wilson v, Jan 15 2005 *)
    LinearRecurrence[{1,2,1,-1},{1,2,5,10},40] (* Harvey P. Dale, Oct 24 2017 *)
  • PARI
    x='x+O('x^30); Vec((1+x+x^2)/(1-x-2*x^2-x^3+x^4)) \\ G. C. Greubel, Apr 03 2018
    

Formula

G.f.: (1+x+x^2)/(1-x-2*x^2-x^3+x^4). - G. C. Greubel, Apr 03 2018

Extensions

More terms from Robert G. Wilson v, Jan 15 2005

A101399 a(0) = 1, a(1) = 2, a(2) = 5; for n >= 3, a(n) = a(n-1) + 2*a(n-2) + a(n-3).

Original entry on oeis.org

1, 2, 5, 10, 22, 47, 101, 217, 466, 1001, 2150, 4618, 9919, 21305, 45761, 98290, 211117, 453458, 973982, 2092015, 4493437, 9651449, 20730338, 44526673, 95638798, 205422482, 441226751, 947710513, 2035586497, 4372234274
Offset: 0

Author

Jeroen F.J. Laros, Jan 15 2005

Keywords

Comments

Lengths of successive words (starting with a) under the substitution: {a -> ab, b -> aac, c -> a}.

Crossrefs

Pairwise sums of A078007. Bisection of A003410 and A058278.

Programs

  • GAP
    a:=[1,2,5];; for n in [4..35] do a[n]:=a[n-1]+2*a[n-2]+a[n-3]; od; a; # Muniru A Asiru, Apr 03 2018
  • Magma
    I:=[1,2,5]; [n le 3 select I[n] else Self(n-1) + 2*Self(n-2) + Self(n-3): n in [1..30]]; // G. C. Greubel, Apr 03 2018
    
  • Magma
    m:=25; R:=PowerSeriesRing( Integers(), m); Coefficients(R!((1+x+x^2)/(1-x-2*x^2-x^3))); // G. C. Greubel, Apr 03 2018
    
  • Mathematica
    a[0] = 1; a[1] = 2; a[2] = 5; a[n_] := a[n] = a[n - 1] + 2a[n - 2] + a[n - 3]; Table[ a[n], {n, 0, 30}] (* Robert G. Wilson v, Jan 15 2005 *)
    LinearRecurrence[{1,2,1},{1,2,5},30] (* Harvey P. Dale, Aug 29 2012 *)
    CoefficientList[Series[(1+x+x^2)/(1-x-2*x^2-x^3), {x, 0, 50}], x] (* G. C. Greubel, Apr 03 2018 *)
  • PARI
    x='x+O('x^30); Vec((1+x+x^2)/(1-x-2*x^2-x^3)) \\ G. C. Greubel, Apr 03 2018
    

Formula

G.f.: (1+x+x^2)/(1-x-2*x^2-x^3). - G. C. Greubel, Apr 03 2018

Extensions

More terms from Robert G. Wilson v and Lior Manor, Jan 15 2005