cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A223999 T(n,k)=Number of nXk 0..2 arrays with antidiagonals unimodal and rows and diagonals nondecreasing.

Original entry on oeis.org

3, 6, 9, 10, 31, 27, 15, 76, 157, 81, 21, 155, 476, 793, 243, 28, 281, 1144, 2980, 4004, 729, 36, 469, 2403, 7927, 18672, 20216, 2187, 45, 736, 4614, 17929, 55333, 117386, 102069, 6561, 55, 1101, 8291, 36845, 132119, 388598, 739672, 515338, 19683, 66
Offset: 1

Views

Author

R. H. Hardin Mar 30 2013

Keywords

Comments

Table starts
.....3........6........10........15.........21.........28..........36
.....9.......31........76.......155........281........469.........736
....27......157.......476......1144.......2403.......4614........8291
....81......793......2980......7927......17929......36845.......71061
...243.....4004.....18672.....55333.....132119.....281271......559188
...729....20216....117386....388598.....984595....2160036.....4368458
..2187...102069....739672...2743444....7400832...16795265....34534687
..6561...515338...4664776..19437479...55978489..131782267...276286000
.19683..2601899..29428242.138010718..425257387.1040869367..2229871293
.59049.13136773.185670484.981047716.3240026429.8260503068.18115082917

Examples

			Some solutions for n=3 k=4
..0..0..0..1....1..1..2..2....0..0..0..0....2..2..2..2....0..0..0..0
..0..1..2..2....0..1..1..2....0..0..2..2....0..2..2..2....0..0..2..2
..2..2..2..2....0..0..1..2....0..0..1..2....2..2..2..2....2..2..2..2
		

Crossrefs

Column 1 is A000244
Column 2 is A038223
Row 1 is A000217(n+1)

Formula

Empirical: columns k=1..7 have recurrences of order 1,3,9,18,28,39,54 for n>0,0,0,19,31,44,61
Empirical: rows n=1..7 are polynomials of degree 2*n for k>0,0,2,4,6,8,10

A123218 Irregular triangle formed by coefficients of polynomials defined by P(n,k,x) = f(n,k)*(2*x)^k*(1 - x^2)^(n - k), where f(n, k) = (-1)^floor((k + 1)/2)* binomial(n - floor((k + 1)/2), floor(k/2)).

Original entry on oeis.org

1, 1, -2, -1, 1, -2, -6, 2, 1, 1, -2, -11, 12, 11, -2, -1, 1, -2, -16, 22, 46, -22, -16, 2, 1, 1, -2, -21, 32, 106, -92, -106, 32, 21, -2, -1, 1, -2, -26, 42, 191, -212, -396, 212, 191, -42, -26, 2, 1, 1, -2, -31, 52, 301, -382, -1011, 792, 1011, -382, -301, 52, 31, -2, -1
Offset: 1

Views

Author

Roger L. Bagula and Gary W. Adamson, Oct 04 2006

Keywords

Examples

			Triangle begins with:
1;
1, -2,  -1;
1, -2,  -6,  2,  1;
1, -2, -11, 12, 11,  -2,  -1;
1, -2, -16, 22, 46, -22, -16, 2, 1;
		

Crossrefs

Programs

  • Mathematica
    f[n_, k_]:= (-1)^Floor[(k+1)/2]*Binomial[n -Floor[(k+1)/2], Floor[k/2]]; Table[CoefficientList[Sum[f[n, k]*(2*x)^k*(1-x^2)^(n-k), {k, 0, n}], x], {n, 0, 10}]//Flatten

Formula

Let f(n, k) = (-1)^floor((k + 1)/2)*binomial(n - floor((k + 1)/2), floor(k/2)) then the polynomials P(n, k, x) = f(n,k)*(2*x)^k*(1 - x^2)^(n - k) for an irregular triangle of coefficients.

A122073 Triangular array from Steinbach matrices plus their squares as characteristic polynomials: M[i,j]=A[i,j]+A[i,j]^2: A[i,j]^2=Min[i,j]; CharacteristicPolynomial[M[i,j]];.

Original entry on oeis.org

1, 2, -1, 0, -4, 1, 2, -9, 8, -1, -2, -3, 19, -12, 1, -4, -6, 47, -55, 18, -1, 2, 15, 0, -88, 93, -24, 1, 2, 23, -7, -190, 324, -182, 32, -1, 0, -12, -63, 62, 332, -554, 274, -40, 1, 2, -9, -108, 133, 678, -1642, 1346, -450, 50, -1, -2, -11, 55, 276, -463, -1129, 2832, -2128, 630, -60, 1, -4, -30, 71, 543, -1044, -2204, 7761
Offset: 1

Views

Author

Gary W. Adamson and Roger L. Bagula, Oct 16 2006

Keywords

Comments

Based on the idea that the Steinbach matrices form a "golden Field". Matrices are: {{2, 2}, {2, 2}}, {{2, 2, 2}, {2, 3, 2}, {2, 2, 3}}, {{2, 2, 2, 2}, {2, 3, 3, 2}, {2, 3, 3, 3}, {2, 2, 3, 4}}, {{2, 2, 2, 2, 2}, {2, 3, 3, 3, 2}, {2, 3, 4, 3, 3}, {2, 3, 3, 4, 4}, {2, 2, 3, 4, 5}}, {{2, 2, 2, 2, 2, 2}, {2,3, 3, 3, 3, 2}, {2, 3, 4, 4, 3, 3}, {2, 3, 4, 4, 4, 4}, {2, 3, 3, 4, 5, 5}, {2, 2, 3, 4, 5, 6}}

Examples

			{1},
{2, -1},
{0, -4, 1},
{2, -9, 8, -1},
{-2, -3, 19, -12, 1},
{-4, -6,47, -55, 18, -1}
{2, 15, 0, -88, 93, -24, 1},
{2, 23, -7, -190, 324, -182, 32, -1},
{0, -12, -63, 62, 332, -554, 274, -40, 1}
		

Crossrefs

Programs

  • Mathematica
    An[d_] := Table[Min[n, m] + If[n + m - 1 > d, 0, 1], {n, 1, d}, {m, 1, d}]; Join[{{1}}, Table[CoefficientList[CharacteristicPolynomial[An[d], x], x], {d,1, 20}]]; Flatten[%]

Formula

d-th level M(i,j)->An[d]; T(n,m)=CoefficientList[CharacteristicPolynomial[An[d], x], x]
Showing 1-3 of 3 results.