A122160 Identity matrices minus Steinbach matrices as characteristic polynomials to give a triangular array I[n]-An[i,j]-> P[k,x] P[k,n]->T[n,m).
1, 0, -1, -1, -1, 1, -1, 2, 1, -1, -2, 7, -3, -2, 1, -1, 7, -13, 5, 2, -1, -1, 12, -34, 30, -6, -3, 1, 0, 5, -30, 60, -45, 9, 3, -1, 1, 1, -41, 130, -155, 78, -10, -4, 1, 1, -6, -3, 87, -220, 229, -106, 14, 4, -1, 2, -19, 45, 54, -378, 609, -455, 160, -15, -5, 1, 1, -15, 73, -123, -89, 609, -889, 615, -205, 20, 5, -1, 1, -24, 164, -460
Offset: 1
Examples
{1}, {0, -1}, {-1, -1, 1}, {-1, 2, 1, -1}, {-2, 7, -3, -2, 1}, {-1, 7, -13, 5, 2, -1}, {-1, 12, -34, 30, -6, -3, 1}, {0, 5, -30, 60, -45, 9,3, -1}, {1, 1, -41, 130, -155, 78, -10, -4, 1}
Links
- P. Steinbach, Golden fields: a case for the heptagon, Math. Mag. 70 (1997), no. 1, 22-31.
Programs
-
Mathematica
An[d_] := Table[If[n + m - 1 > d, 0, 1], {n, 1, d}, {m, 1, d}]; Join[{{1}}, Table[CoefficientList[CharacteristicPolynomial[IdentityMatrix[d] - An[d], x], x], {d, 1, 20}]]; Flatten[%]
Formula
I[n]-An[i,j]-> P[k,x] P[k,n]->T[n,m)
Comments