A122185 Cube of the Steinbach matrix as a characteristic polynomial triangular array.
1, 1, -1, -1, -4, 1, -1, 4, 11, -1, 1, 4, -21, -23, 1, 1, -4, -31, 60, 42, -1, -1, -4, 41, 100, -171, -69, 1, -1, 4, 51, -140, -400, 381, 106, -1, 1, 4, -61, -180, 729, 1060, -823, -154, 1, 1, -4, -71, 220, 1158, -2136, -3032, 1561, 215, -1, -1, -4, 81, 260, -1687, -3612, 7721, 6887, -2874, -290, 1, -1, 4, 91, -300, -2316
Offset: 1
Examples
{1}, {1, -1}, {-1, -4, 1}, {-1, 4, 11, -1}, {1, 4, -21, -23, 1}, {1, -4, -31, 60, 42, -1}, {-1, -4, 41, 100, -171, -69, 1}, {-1, 4, 51, -140, -400, 381, 106, -1}
Links
- P. Steinbach, Golden fields: a case for the heptagon, Math. Mag. 70 (1997), no. 1, 22-31.
Programs
-
Mathematica
An[d_] := Table[If[n + m - 1 > d, 0, 1], {n, 1, d}, {m, 1, d}]; Join[{{1}}, Table[CoefficientList[CharacteristicPolynomial[MatrixPower[An[d], 3], x], x], {d, 1, 20}]]; Flatten[%]
Formula
A(i,j)^3-->P(n,k) P(n,k)->T(n,m)
Comments