cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

User: Sarah-Marie Belcastro

Sarah-Marie Belcastro's wiki page.

Sarah-Marie Belcastro has authored 4 sequences.

A351635 a(n) is the number of perfect matchings of an edge-labeled 2 X n Klein bottle grid graph, or equivalently the number of domino tilings of a 2 X n Klein bottle grid. (The twist is on the length-n side.)

Original entry on oeis.org

2, 6, 10, 16, 38, 54, 142, 196, 530, 726, 1978, 2704, 7382, 10086, 27550, 37636, 102818, 140454, 383722, 524176, 1432070, 1956246, 5344558, 7300804, 19946162, 27246966, 74440090, 101687056, 277814198, 379501254, 1036816702, 1416317956, 3869452610, 5285770566, 14440993738, 19726764304, 53894522342, 73621286646
Offset: 1

Author

Sarah-Marie Belcastro, Feb 15 2022

Keywords

Comments

Output of Lu and Wu's formula for the number of perfect matchings of an m X n Klein bottle grid specializes to this sequence for m=2 and the twist on the length-n side.

Examples

			a(1) = 2 because this is the number of perfect matchings of a 2 X 1 Klein bottle grid graph (one for each choice of the two non-loop edges).
		

Programs

  • Mathematica
    RecurrenceTable[{a[n] ==
       a[n - 1] + a[n - 2] + Mod[n, 2] a[n - 1] - 4 Mod[n, 2], a[1] == 2,
      a[2] == 6}, a, {n, 1, 50}]

Formula

a(n) = a(n-1) + a(n-2) + (n mod 2)*a(n-1) - 4*(n mod 2).
From Stefano Spezia, Feb 15 2022: (Start)
G.f.: 2*x*(1 + 3*x - 7*x^3 - x^4 + 2*x^5)/(1 - 5*x^2 + 5*x^4 - x^6).
a(n) = 5*a(n-2) - 5*a(n-4) + a(n-6) for n > 6. (End)

A162483 a(n) is the number of perfect matchings of an edge-labeled 2 X (2n+1) Mobius grid graph.

Original entry on oeis.org

3, 6, 13, 31, 78, 201, 523, 1366, 3573, 9351, 24478, 64081, 167763, 439206, 1149853, 3010351, 7881198, 20633241, 54018523, 141422326, 370248453, 969323031, 2537720638, 6643838881, 17393796003, 45537549126, 119218851373, 312119004991, 817138163598
Offset: 0

Author

Sarah-Marie Belcastro, Jul 04 2009

Keywords

Comments

This is a specialization for m=2 of a general formula for the number of perfect matchings of an edge-labeled m X (2n+1) Mobius grid graph.

Examples

			G.f. = 3 + 6*x + 13*x^2 + 31*x^3 + 78*x^4 + 201*x^5 + 523*x^6 + 1366*x^7 + ...
a(0) = 3 because this is the number of perfect matchings of a 2 X 1 Mobius grid graph (one for each of the three multiple edges).
		

Crossrefs

Programs

  • Magma
    m:=25; R:=PowerSeriesRing(Integers(), m); Coefficients(R!((3-6*x+x^2)/((1-x)*(x^2-3*x+1)))); // G. C. Greubel, Sep 22 2018
  • Mathematica
    Table[Re[(1 - I) (2*I + Fibonacci[2 + 2*n] + 1/2 (-Fibonacci[1 + 2*n] + LucasL[1 + 2*n]))], {n, 0, 30}]
    Table[LucasL[2*n + 1] + 2, {n, 0, 30}] (* Clark Kimberling, Oct 26 2012 *)
    LinearRecurrence[{4, -4, 1}, {3, 6, 13}, 30] (* or *) CoefficientList[Series[(-3 + 6 x - x^2)/(-1 + 4 x - 4 x^2 + x^3), {x, 0, 30}], x] (* Stefano Spezia, Sep 23 2018 *)
  • PARI
    {a(n) = 2 + fibonacci(2*n) + fibonacci(2*n+2)}; /* Michael Somos, Nov 03 2016 */
    

Formula

a(n) = Real((1-I) * ((L(2*n+1) - F(2*n+1))/2 + F(2*n+2) + 2*I)).
From R. J. Mathar, Aug 08 2009: (Start)
a(n) = 4*a(n-1) - 4*a(n-2) + a(n-3).
G.f.: (3-6*x+x^2)/((1-x)*(x^2-3*x+1)). (End)
a(n+1)-a(n) = A005248(n+1). - R. J. Mathar, Dec 18 2010
a(n) = A000032(2n+1)+2. - Clark Kimberling, Oct 26 2012
a(n) = 2^(-1-n)*(2^(2+n)-(3-sqrt(5))^n*(-1+sqrt(5))+(1+sqrt(5))*(3+sqrt(5))^n). - Colin Barker, Nov 03 2016
a(n) = 2 + L(2*n+1), A256233(n) = -a(-n-1) for all n in Z. - Michael Somos, Nov 03 2016

A162484 a(1) = 2, a(2) = 8; a(n) = 2 a(n - 1) + a(n - 2) - 4*(n mod 2).

Original entry on oeis.org

2, 8, 14, 36, 82, 200, 478, 1156, 2786, 6728, 16238, 39204, 94642, 228488, 551614, 1331716, 3215042, 7761800, 18738638, 45239076, 109216786, 263672648, 636562078, 1536796804, 3710155682, 8957108168, 21624372014, 52205852196, 126036076402, 304278005000
Offset: 1

Author

Sarah-Marie Belcastro, Jul 04 2009

Keywords

Comments

a(n) is the number of perfect matchings of an edge-labeled 2 X n toroidal grid graph, or equivalently the number of domino tilings of a 2 X n toroidal grid.

Examples

			a(3) = 2 a(2) + a(1) - 4*(3 mod 2) = 2*8 + 2 - 4 = 14.
		

Crossrefs

Cf. A000129.

Programs

  • Mathematica
    Fold[Append[#1, 2 #1[[#2 - 1]] + #1[[#2 - 2]] - 4 Mod[#2, 2]] &, {2, 8}, Range[3, 30]] (* or *)
    Rest@ CoefficientList[Series[-2 x (-1 - 2 x + 3 x^2 + 2 x^3)/((x - 1) (1 + x) (x^2 + 2 x - 1)), {x, 0, 30}], x] (* Michael De Vlieger, Dec 16 2017 *)
    LinearRecurrence[{2,2,-2,-1},{2,8,14,36},30] (* Harvey P. Dale, Aug 24 2018 *)

Formula

for n > 2, (1/2) ((1 + sqrt(2))^n (2 - (-2 + sqrt(2)) (-1 + sqrt(2))^(2 floor(n/2))) + (1 - sqrt(2))^n (2 + (1 + sqrt(2))^(2 floor(n/2)) (2 + sqrt(2)))) (from Mathematica's solution to the recurrence).
Pell(n) + Pell(n-2) + 2*((n-1) mod 2).
From R. J. Mathar, Jul 26 2009: (Start)
a(n)= 2*a(n-1) + 2*a(n-2) - 2*a(n-3) - a(n-4) = 2*A100828(n-1).
G.f.: -2*x*(-1-2*x+3*x^2+2*x^3)/((x-1)*(1+x)*(x^2+2*x-1)).
(End)
a(n) = 1 + (-1)^n + (1-sqrt(2))^n + (1+sqrt(2))^n. - Colin Barker, Dec 16 2017

A162485 a(1)=4, a(2)=6; for n > 2, a(n) = 2*a(n-1) + a(n-2) - 4*((n-1) mod 2).

Original entry on oeis.org

4, 6, 16, 34, 84, 198, 480, 1154, 2788, 6726, 16240, 39202, 94644, 228486, 551616, 1331714, 3215044, 7761798, 18738640, 45239074, 109216788, 263672646, 636562080, 1536796802, 3710155684, 8957108166, 21624372016, 52205852194, 126036076404, 304278004998, 734592086400
Offset: 1

Author

Sarah-Marie Belcastro, Jul 04 2009

Keywords

Comments

a(n) is the number of perfect matchings of an edge-labeled 2 X n Klein bottle grid graph, or equivalently the number of domino tilings of a 2 X n Klein bottle grid. (The twist is on the length-2 side.)

Examples

			a(3) = 2*a(2) + a(1) - 4*(2 mod 2) = 2*6 + 4 - 0 = 16.
		

Crossrefs

Cf. A002203.

Programs

  • Mathematica
    LinearRecurrence[{2, 2, -2, -1}, {4, 6, 16, 34}, 50] (* Paolo Xausa, Jun 27 2025 *)

Formula

For n > 1, a(n) = (1/2)*((1 + sqrt(2))^n*(2 + (-1 + sqrt(2))^(2*floor((1/2)*(-1 + n)))*(-4 + 3*sqrt(2))) + (1 - sqrt(2))^n*(2 - (-1 - sqrt(2))^(2*floor((1/2)*(-1 + n)))*(4 + 3*sqrt(2)))).
From Colin Barker, May 01 2012: (Start)
a(n) = 1 - (-1)^n + (1-sqrt(2))^n + (1+sqrt(2))^n.
G.f.: 2*x*(2-x-2*x^2-x^3)/(1-x)/(1+x)/(1-2*x-x^2). (End)
a(n) = A002203(n) + 1 - (-1)^n. - R. J. Mathar, Oct 08 2016