cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

User: Branko Malesevic

Branko Malesevic's wiki page.

Branko Malesevic has authored 11 sequences. Here are the ten most recent ones:

A187179 Number of nontrivial compositions of differential operations and directional derivative of the n-th order on the space R^10.

Original entry on oeis.org

7, 7, 8, 9, 11, 14, 19, 27, 40, 61, 95, 150, 239, 383, 616, 993, 1603, 2590, 4187, 6771, 10952, 17717, 28663, 46374, 75031, 121399, 196424, 317817, 514235, 832046, 1346275, 2178315, 3524584, 5702893, 9227471, 14930358, 24157823
Offset: 1

Author

Branko Malesevic, Mar 06 2011

Keywords

Crossrefs

Cf. A000045.

Programs

  • Mathematica
    LinearRecurrence[{2,0,-1},{7,7,8},40] (* Harvey P. Dale, Apr 29 2015 *)

Formula

a(n) = A000045(n) + 6.
a(n) = 2*a(n-1)-a(n-3). G.f.: -x*(6*x^2+7*x-7) / ((x-1)*(x^2+x-1)). [Colin Barker, Dec 14 2012]

A187107 Number of nontrivial compositions of differential operations and directional derivative of the n-th order on the space R^9.

Original entry on oeis.org

8, 8, 9, 10, 12, 15, 20, 28, 41, 62, 96, 151, 240, 384, 617, 994, 1604, 2591, 4188, 6772, 10953, 17718, 28664, 46375, 75032, 121400, 196425, 317818, 514236, 832047, 1346276, 2178316, 3524585, 5702894, 9227472, 14930359, 24157824, 39088176
Offset: 1

Author

Branko Malesevic, Mar 06 2011

Keywords

Crossrefs

Cf. A000045.

Programs

  • Mathematica
    LinearRecurrence[{2,0,-1},{8,8,9},50] (* Harvey P. Dale, Jul 10 2017 *)

Formula

a(n) = A000045(n) + 7.
a(n) = 2*a(n-1)-a(n-3). G.f.: -x*(7*x^2+8*x-8) / ((x-1)*(x^2+x-1)). [Colin Barker, Dec 14 2012]

A129638 Number of meaningful differential operations of the k-th order on the space R^11.

Original entry on oeis.org

11, 21, 40, 77, 148, 286, 552, 1069, 2068, 4010, 7768, 15074, 29225, 56736, 110055, 213705, 414676, 805314, 1562977, 3035514, 5892257, 11443768, 22215753, 43146726, 83766396, 162686691, 315860810, 613439352, 1191054193, 2313133481
Offset: 11

Author

Branko Malesevic, May 31 2007

Keywords

Comments

Also number of meaningful compositions of the k-th order of the differential operations and Gateaux directional derivative on the space R^10. - Branko Malesevic and Ivana Jovovic (ivana121(AT)EUnet.yu), Jun 20 2007
Also (starting 6,11,...) the number of zig-zag paths from top to bottom of a rectangle of width 12, whose color is that of the top right corner. [Joseph Myers, Dec 23 2008]

Crossrefs

Programs

  • Maple
    NUM := proc(k :: integer) local i,j,n,Fun,Identity,v,A; n:=11; # <- DIMENSION Fun:=(i,j)->piecewise(((j=i+1) or (i+j=n+1)),1,0); Identity:=(i,j)->piecewise(i=j,1,0); v:=matrix(1,n,1); A:=piecewise(k>1,(matrix(n,n,Fun))^(k-1),k=1,matrix(n,n,Identity)); return(evalm(v&*A&*transpose(v))[1,1]); end:
  • Mathematica
    LinearRecurrence[{1, 5, -4, -6, 3, 1}, {11, 21, 40, 77, 148, 286}, 30] (* Jean-François Alcover, Oct 10 2017 *)

Formula

a(k+6) = a(k+5) +5*a(k+4) -4*a(k+3) -6*a(k+2) +3*a(k+1) +a(k).
G.f.: -x^11*(6*x^5+21*x^4-24*x^3-36*x^2+10*x+11)/(x^6+3*x^5-6*x^4-4*x^3+5*x^2+x-1). [Colin Barker, Jul 08 2012]

Extensions

More terms from Branko Malesevic and Ivana Jovovic (ivana121(AT)EUnet.yu), Jun 20 2007
More terms from Joseph Myers, Dec 23 2008

A129639 Number of meaningful differential operations of the k-th order on the space R^12.

Original entry on oeis.org

12, 22, 40, 74, 136, 252, 464, 860, 1584, 2936, 5408, 10024, 18464, 34224, 63040, 116848, 215232, 398944, 734848, 1362080, 2508928, 4650432, 8566016, 15877568, 29246208, 54209408, 99852800, 185082496, 340918784, 631911168, 1163969536
Offset: 12

Author

Branko Malesevic, May 31 2007

Keywords

Comments

Also (starting 7,12,...) the number of zig-zag paths from top to bottom of a rectangle of width 7. [Joseph Myers, Dec 23 2008]

Programs

  • Maple
    NUM := proc(k :: integer) local i,j,n,Fun,Identity,v,A; n:=12; # <- DIMENSION Fun:=(i,j)->piecewise(((j=i+1) or (i+j=n+1)),1,0); Identity:=(i,j)->piecewise(i=j,1,0); v:=matrix(1,n,1); A:=piecewise(k>1,(matrix(n,n,Fun))^(k-1),k=1,matrix(n,n,Identity)); return(evalm(v&*A&*transpose(v))[1,1]); end:
  • Mathematica
    f[k_] := f[k] = If[k <= 17, {12, 22, 40, 74, 136, 252}[[k-11]], 6 f[k-2] - 10 f[k-4] + 4 f[k-6]];
    f /@ Range[12, 42] (* Jean-François Alcover, Apr 21 2020 *)

Formula

f(k+6) = 6*f(k+4)-10*f(k+2)+4*f(k).
Empirical G.f.: 2*x^12*(6+11*x-4*x^2-7*x^3)/(1-4*x^2+2*x^4). [Colin Barker, May 07 2012]

Extensions

More terms from Joseph Myers, Dec 23 2008

A090992 Number of meaningful differential operations of the n-th order on the space R^7.

Original entry on oeis.org

7, 13, 24, 45, 84, 158, 296, 557, 1045, 1966, 3691, 6942, 13038, 24516, 46055, 86585, 162680, 305809, 574624, 1080106, 2029680, 3814941, 7169145, 13474502, 25322375, 47592650, 89441626, 168100324, 315917527, 593742597, 1115852904, 2097145317
Offset: 1

Author

Branko Malesevic, Feb 29 2004

Keywords

Comments

Also number of meaningful compositions of the n-th order of the differential operations and Gateaux directional derivative on the space R^6. - Branko Malesevic and Ivana Jovovic (ivana121(AT)EUnet.yu), Jun 21 2007
Also (starting 4,7,...) the number of zig-zag paths from top to bottom of a rectangle of width 8, whose color is that of the top right corner. - Joseph Myers, Dec 23 2008

Crossrefs

Partial sums of pairwise sums of A065455.

Programs

  • GAP
    a:=[7,13,24,45];; for n in [5..40] do a[n]:=a[n-1]+3*a[n-2] - 2*a[n-3] - a[n-4]; od; a; # G. C. Greubel, Feb 02 2019
  • Magma
    m:=40; R:=PowerSeriesRing(Integers(), m); Coefficients(R!(  x*(7+6*x-10*x^2-4*x^3)/((1-x)*(1-3*x^2-x^3)) )); // G. C. Greubel, Feb 02 2019
    
  • Maple
    NUM := proc(k :: integer) local i,j,n,Fun,Identity,v,A; n := 7; # <- DIMENSION Fun := (i,j)->piecewise(((j=i+1) or (i+j=n+1)),1,0); Identity := (i,j)->piecewise(i=j,1,0); v := matrix(1,n,1); A := piecewise(k>1,(matrix(n,n,Fun))^(k-1),k=1,matrix(n,n,Identity)); return(evalm(v&*A&*transpose(v))[1,1]); end:
  • Mathematica
    LinearRecurrence[{1, 3, -2, -1}, {7, 13, 24, 45}, 32] (* Jean-François Alcover, Nov 25 2017 *)
  • PARI
    my(x='x+O('x^40)); Vec(x*(7+6*x-10*x^2-4*x^3)/((1-x)*(1-3*x^2-x^3))) \\ G. C. Greubel, Feb 02 2019
    
  • Sage
    a=(x*(7+6*x-10*x^2-4*x^3)/((1-x)*(1-3*x^2-x^3))).series(x, 40).coefficients(x, sparse=False); a[1:] # G. C. Greubel, Feb 02 2019
    

Formula

a(n+4) = a(n+3) + 3*a(n+2) - 2*a(n+1) - a(n).
G.f.: x*(7+6*x-10*x^2-4*x^3)/((1-x)*(1-3*x^2-x^3)). - Colin Barker, Mar 08 2012

Extensions

More terms from Branko Malesevic and Ivana Jovovic (ivana121(AT)EUnet.yu), Jun 21 2007
More terms from Joseph Myers, Dec 23 2008

A090993 Number of meaningful differential operations of the n-th order on the space R^8.

Original entry on oeis.org

8, 14, 24, 42, 72, 126, 216, 378, 648, 1134, 1944, 3402, 5832, 10206, 17496, 30618, 52488, 91854, 157464, 275562, 472392, 826686, 1417176, 2480058, 4251528, 7440174, 12754584, 22320522, 38263752, 66961566, 114791256, 200884698
Offset: 1

Author

Branko Malesevic, Feb 29 2004

Keywords

Comments

Also (starting 5,8,...) the number of zig-zag paths from top to bottom of a rectangle of width 5. - Joseph Myers, Dec 23 2008
Number of walks of length n on the path graph P_5. - Andrew Howroyd, Apr 17 2017

Crossrefs

Column 5 of A220062.

Programs

  • GAP
    a:=[8,14];; for n in [3..40] do a[n]:=3*a[n-2]; od; a; # G. C. Greubel, Feb 02 2019
  • Magma
    m:=40; R:=PowerSeriesRing(Integers(), m); Coefficients(R!(  2*x*(4+7*x)/(1-3*x^2) )); // G. C. Greubel, Feb 02 2019
    
  • Maple
    NUM := proc(k :: integer) local i,j,n,Fun,Identity,v,A; n := 8; # <- DIMENSION Fun := (i,j)->piecewise(((j=i+1) or (i+j=n+1)),1,0); Identity := (i,j)->piecewise(i=j,1,0); v := matrix(1,n,1); A := piecewise(k>1,(matrix(n,n,Fun))^(k-1),k=1,matrix(n,n,Identity)); return(evalm(v&*A&*transpose(v))[1,1]); end:
  • Mathematica
    LinearRecurrence[{0, 3}, {8, 14}, 32] (* Jean-François Alcover, Jul 01 2018 *)
  • PARI
    my(x='x+O('x^40)); Vec(2*x*(4+7*x)/(1-3*x^2)) \\ G. C. Greubel, Feb 02 2019
    
  • Sage
    a=(2*x*(4+7*x)/(1-3*x^2)).series(x, 40).coefficients(x, sparse=False); a[1:] # G. C. Greubel, Feb 02 2019
    

Formula

a(n+4) = 4*a(n+2) - 3*a(n).
From Colin Barker, May 03 2012: (Start)
a(n) = 3*a(n-2).
G.f.: 2*x*(4+7*x)/(1-3*x^2). (End)
a(n) = (11+3*(-1)^n) * 3^floor((n-1)/2). - Ralf Stephan, Jul 19 2013

Extensions

More terms from Joseph Myers, Dec 23 2008

A090994 Number of meaningful differential operations of the n-th order on the space R^9.

Original entry on oeis.org

9, 17, 32, 61, 116, 222, 424, 813, 1556, 2986, 5721, 10982, 21053, 40416, 77505, 148785, 285380, 547810, 1050876, 2017126, 3869845, 7427671, 14250855, 27351502, 52479500, 100719775, 193258375, 370895324, 711682501, 1365808847, 2620797529
Offset: 1

Author

Branko Malesevic, Feb 29 2004

Keywords

Comments

Also number of meaningful compositions of the n-th order of the differential operations and Gateaux directional derivative on the space R^8. - Branko Malesevic and Ivana Jovovic (ivana121(AT)EUnet.yu), Jun 21 2007
Also (starting 5,9,...) the number of zig-zag paths from top to bottom of a rectangle of width 10, whose color is that of the top right corner. [From Joseph Myers, Dec 23 2008]
Also, number of n-digit terms in A033075 (stated without proof in A033075). - Zak Seidov, Feb 02 2011

Programs

  • GAP
    a:=[9,17,32,61,116];; for n in [6..40] do a[n]:=a[n-1]+4*a[n-2] - 3*a[n-3]-3*a[n-4]+a[n-5]; od; a; # G. C. Greubel, Feb 02 2019
  • Magma
    m:=40; R:=PowerSeriesRing(Integers(), m); Coefficients(R!(  x*(9+8*x-21*x^2-12*x^3+5*x^4)/(1-x-4*x^2+3*x^3+3*x^4-x^5) )); // G. C. Greubel, Feb 02 2019
    
  • Maple
    NUM := proc(k :: integer) local i,j,n,Fun,Identity,v,A; n := 9; # <- DIMENSION Fun := (i,j)->piecewise(((j=i+1) or (i+j=n+1)),1,0); Identity := (i,j)->piecewise(i=j,1,0); v := matrix(1,n,1); A := piecewise(k>1,(matrix(n,n,Fun))^(k-1),k=1,matrix(n,n,Identity)); return(evalm(v&*A&*transpose(v))[1,1]); end:
  • Mathematica
    LinearRecurrence[{1, 4, -3, -3, 1}, {9, 17, 32, 61, 116}, 31] (* Jean-François Alcover, Nov 20 2017 *)
  • PARI
    my(x='x+O('x^40)); Vec(x*(9+8*x-21*x^2-12*x^3+5*x^4)/(1-x-4*x^2 +3*x^3+3*x^4-x^5)) \\ G. C. Greubel, Feb 02 2019
    
  • Sage
    a=(x*(9+8*x-21*x^2-12*x^3+5*x^4)/(1-x-4*x^2+3*x^3+3*x^4-x^5)).series(x, 40).coefficients(x, sparse=False); a[1:] # G. C. Greubel, Feb 02 2019
    

Formula

a(k+5) = a(k+4) + 4*a(k+3) - 3*a(k+2) - 3*a(k+1) + a(k).
G.f.: x*(9+8*x-21*x^2-12*x^3+5*x^4)/(1-x-4*x^2+3*x^3+3*x^4-x^5). - Maksym Voznyy (voznyy(AT)mail.ru), Aug 11 2009; corrected by R. J. Mathar, Sep 16 2009

Extensions

More terms from Joseph Myers, Dec 23 2008

A090995 Number of meaningful differential operations of the n-th order on the space R^10.

Original entry on oeis.org

10, 18, 32, 58, 104, 188, 338, 610, 1098, 1980, 3566, 6428, 11580, 20870, 37602, 67762, 122096, 220018, 396448, 714388, 1287266, 2319594, 4179738, 7531660, 13571542, 24455124, 44066548, 79405254, 143083226, 257827186, 464588384
Offset: 1

Author

Branko Malesevic, Feb 29 2004

Keywords

Comments

Also (starting 6,10,...) the number of zig-zag paths from top to bottom of a rectangle of width 6. - Joseph Myers, Dec 23 2008
Number of walks of length n on the path graph P_6. - Andrew Howroyd, Apr 17 2017

Crossrefs

Column 6 of A220062.

Programs

  • GAP
    a:=[10,18,32];; for n in [4..30] do a[n]:=a[n-1]+2*a[n-2]-a[n-3]; od; a; # G. C. Greubel, Feb 02 2019
  • Magma
    m:=40; R:=PowerSeriesRing(Integers(), m); Coefficients(R!(  2*x*(5+4*x-3*x^2)/(1-x-2*x^2+x^3) )); // G. C. Greubel, Feb 02 2019
    
  • Maple
    NUM := proc(k :: integer) local i,j,n,Fun,Identity,v,A; n := 10; # <- DIMENSION Fun := (i,j)->piecewise(((j=i+1) or (i+j=n+1)),1,0); Identity := (i,j)->piecewise(i=j,1,0); v := matrix(1,n,1); A := piecewise(k>1,(matrix(n,n,Fun))^(k-1),k=1,matrix(n,n,Identity)); return(evalm(v&*A&*transpose(v))[1,1]); end:
  • Mathematica
    a[n_ /; n <= 6] := {10, 18, 32, 58, 104, 188}[[n]]; a[n_] := a[n] = 5*a[n-2] - 6*a[n-4] + a[n-6]; Array[a, 31] (* Jean-François Alcover, Oct 07 2017 *)
    2*LinearRecurrence[{1,2,-1}, {5,9,16}, 40] (* G. C. Greubel, Feb 02 2019 *)
  • PARI
    my(x='x+O('x^40)); Vec(2*x*(5+4*x-3*x^2)/(1-x-2*x^2+x^3)) \\ G. C. Greubel, Feb 02 2019
    
  • Sage
    a=(2*x*(5+4*x-3*x^2)/(1-x-2*x^2+x^3)).series(x, 40).coefficients(x, sparse=False); a[1:] # G. C. Greubel, Feb 02 2019
    

Formula

Equals 2 * A090990.
a(k+6) = 5*a(k+4) - 6*a(k+2) + a(k).
From Colin Barker, May 03 2012: (Start)
a(n) = a(n-1) + 2*a(n-2) - a(n-3).
G.f.: 2*x*(5+4*x-3*x^2)/(1-x-2*x^2+x^3). (End)

Extensions

More terms from Joseph Myers, Dec 23 2008

A090990 Number of meaningful differential operations of the n-th order on the space R^5.

Original entry on oeis.org

5, 9, 16, 29, 52, 94, 169, 305, 549, 990, 1783, 3214, 5790, 10435, 18801, 33881, 61048, 110009, 198224, 357194, 643633, 1159797, 2089869, 3765830, 6785771, 12227562, 22033274, 39702627, 71541613, 128913593, 232294192, 418579765
Offset: 1

Author

Branko Malesevic, Feb 29 2004

Keywords

Comments

Also number of meaningful compositions of the n-th order of the differential operations and Gateaux directional derivative on the space R^4. - Branko Malesevic and Ivana Jovovic (ivana121(AT)EUnet.yu), Jun 21 2007

Programs

  • GAP
    a:=[5,9,16];; for n in [4..30] do a[n]:=a[n-1]+2*a[n-2]-a[n-3]; od; a; # G. C. Greubel, Feb 02 2019
  • Magma
    m:=40; R:=PowerSeriesRing(Integers(), m); Coefficients(R!(  x*(5+4*x-3*x^2)/(1-x-2*x^2+x^3) )); // G. C. Greubel, Feb 02 2019
    
  • Maple
    NUM := proc(k :: integer) local i,j,n,Fun,Identity,v,A; n := 5; # <- DIMENSION Fun := (i,j)->piecewise(((j=i+1) or (i+j=n+1)),1,0); Identity := (i,j)->piecewise(i=j,1,0); v := matrix(1,n,1); A := piecewise(k>1,(matrix(n,n,Fun))^(k-1),k=1,matrix(n,n,Identity)); return(evalm(v&*A&*transpose(v))[1,1]); end:
  • Mathematica
    LinearRecurrence[{1, 2, -1}, {5, 9, 16}, 32] (* Jean-François Alcover, Nov 22 2017 *)
  • PARI
    my(x='x+O('x^40)); Vec(x*(5+4*x-3*x^2)/(1-x-2*x^2+x^3)) \\ G. C. Greubel, Feb 02 2019
    
  • Sage
    a=(x*(5+4*x-3*x^2)/(1-x-2*x^2+x^3)).series(x, 40).coefficients(x, sparse=False); a[1:] # G. C. Greubel, Feb 02 2019
    

Formula

a(n+3) = a(n+2) + 2*a(n+1) - a(n).
G.f.: x*(5+4*x-3*x^2)/(1-x-2*x^2+x^3). - Ralf Stephan, Aug 19 2004

Extensions

More terms from Ralf Stephan, Aug 19 2004
More terms from Branko Malesevic and Ivana Jovovic (ivana121(AT)EUnet.yu), Jun 21 2007

A090989 Number of meaningful differential operations of the n-th order on the space R^4.

Original entry on oeis.org

4, 6, 8, 12, 16, 24, 32, 48, 64, 96, 128, 192, 256, 384, 512, 768, 1024, 1536, 2048, 3072, 4096, 6144, 8192, 12288, 16384, 24576, 32768, 49152, 65536, 98304, 131072, 196608, 262144, 393216, 524288, 786432, 1048576, 1572864, 2097152, 3145728, 4194304, 6291456, 8388608
Offset: 1

Author

Branko Malesevic, Feb 29 2004

Keywords

Programs

  • GAP
    a:=[4,6];; for n in [3..40] do a[n]:=2*a[n-2]; od; a; # G. C. Greubel, Feb 02 2019
  • Magma
    m:=40; R:=PowerSeriesRing(Integers(), m); Coefficients(R!(  2*x*(2+3*x)/(1-2*x^2) )); // G. C. Greubel, Feb 02 2019
    
  • Maple
    NUM := proc(k :: integer) local i,j,n,Fun,Identity,v,A; n := 4; # <- DIMENSION Fun := (i,j)->piecewise(((j=i+1) or (i+j=n+1)),1,0); Identity := (i,j)->piecewise(i=j,1,0); v := matrix(1,n,1); A := piecewise(k>1,(matrix(n,n,Fun))^(k-1),k=1,matrix(n,n,Identity)); return(evalm(v&*A&*transpose(v))[1,1]); end:
  • Mathematica
    LinearRecurrence[{0,2}, {4,6}, 40] (* G. C. Greubel, Feb 02 2019 *)
  • PARI
    my(x='x+O('x^40)); Vec(2*x*(2+3*x)/(1-2*x^2)) \\ G. C. Greubel, Feb 02 2019
    
  • Sage
    (2*(2+3*x)/(1-2*x^2)).series(x, 40).coefficients(x, sparse=False) # G. C. Greubel, Feb 02 2019
    

Formula

a(k+2) = 2*a(k).
a(n) = b(n+3) where b(n) = gcdConv(c(n)) = Sum_{k=0..n} gcd(c(k),c(n-k)) and c(k)=A000079(k) for k>0 and c(0)=1. - Tilman Neumann, Jan 11 2009 [Updated by Sean A. Irvine, Jan 15 2025]
G.f.: 2*x*(2+3*x)/(1-2*x^2). - Colin Barker, May 03 2012
a(n) = 2*A164090(n). - R. J. Mathar, Jan 25 2023
a(n) = (sqrt(2))^n*(3/2 + sqrt(2) + (-1)^n*(3/2 - sqrt(2))). - Taras Goy, Jan 04 2025

Extensions

More terms from Tilman Neumann, Feb 06 2009