A090994
Number of meaningful differential operations of the n-th order on the space R^9.
Original entry on oeis.org
9, 17, 32, 61, 116, 222, 424, 813, 1556, 2986, 5721, 10982, 21053, 40416, 77505, 148785, 285380, 547810, 1050876, 2017126, 3869845, 7427671, 14250855, 27351502, 52479500, 100719775, 193258375, 370895324, 711682501, 1365808847, 2620797529
Offset: 1
- G. C. Greubel, Table of n, a(n) for n = 1..1000
- B. Malesevic, Some combinatorial aspects of differential operation composition on the space R^n, Univ. Beograd, Publ. Elektrotehn. Fak., Ser. Mat. 9 (1998), 29-33.
- Branko Malesevic, Some combinatorial aspects of differential operation compositions on space R^n, arXiv:0704.0750 [math.DG], 2007.
- B. Malesevic and I. Jovovic, The Compositions of the Differential Operations and Gateaux Directional Derivative, arxiv:0706.0249 [math.CO], 2007.
- Joseph Myers, BMO 2008--2009 Round 1 Problem 1---Generalisation
- Index entries for linear recurrences with constant coefficients, signature (1, 4, -3, -3, 1).
-
a:=[9,17,32,61,116];; for n in [6..40] do a[n]:=a[n-1]+4*a[n-2] - 3*a[n-3]-3*a[n-4]+a[n-5]; od; a; # G. C. Greubel, Feb 02 2019
-
m:=40; R:=PowerSeriesRing(Integers(), m); Coefficients(R!( x*(9+8*x-21*x^2-12*x^3+5*x^4)/(1-x-4*x^2+3*x^3+3*x^4-x^5) )); // G. C. Greubel, Feb 02 2019
-
NUM := proc(k :: integer) local i,j,n,Fun,Identity,v,A; n := 9; # <- DIMENSION Fun := (i,j)->piecewise(((j=i+1) or (i+j=n+1)),1,0); Identity := (i,j)->piecewise(i=j,1,0); v := matrix(1,n,1); A := piecewise(k>1,(matrix(n,n,Fun))^(k-1),k=1,matrix(n,n,Identity)); return(evalm(v&*A&*transpose(v))[1,1]); end:
-
LinearRecurrence[{1, 4, -3, -3, 1}, {9, 17, 32, 61, 116}, 31] (* Jean-François Alcover, Nov 20 2017 *)
-
my(x='x+O('x^40)); Vec(x*(9+8*x-21*x^2-12*x^3+5*x^4)/(1-x-4*x^2 +3*x^3+3*x^4-x^5)) \\ G. C. Greubel, Feb 02 2019
-
a=(x*(9+8*x-21*x^2-12*x^3+5*x^4)/(1-x-4*x^2+3*x^3+3*x^4-x^5)).series(x, 40).coefficients(x, sparse=False); a[1:] # G. C. Greubel, Feb 02 2019
A090990
Number of meaningful differential operations of the n-th order on the space R^5.
Original entry on oeis.org
5, 9, 16, 29, 52, 94, 169, 305, 549, 990, 1783, 3214, 5790, 10435, 18801, 33881, 61048, 110009, 198224, 357194, 643633, 1159797, 2089869, 3765830, 6785771, 12227562, 22033274, 39702627, 71541613, 128913593, 232294192, 418579765
Offset: 1
- G. C. Greubel, Table of n, a(n) for n = 1..1000
- Branko Malesevic, Some combinatorial aspects of differential operation composition on the space R^n, Univ. Beograd, Publ. Elektrotehn. Fak., Ser. Mat. 9 (1998), 29-33.
- Branko Malesevic, Some combinatorial aspects of differential operation composition on the space R^n, arXiv:0704.0750 [math.DG], 2007.
- Branko Malesevic and I. Jovovic, The Compositions of the Differential Operations and Gateaux Directional Derivative, arXiv:0706.0249 [math.CO], 2007.
- Index entries for linear recurrences with constant coefficients, signature (1,2,-1).
-
a:=[5,9,16];; for n in [4..30] do a[n]:=a[n-1]+2*a[n-2]-a[n-3]; od; a; # G. C. Greubel, Feb 02 2019
-
m:=40; R:=PowerSeriesRing(Integers(), m); Coefficients(R!( x*(5+4*x-3*x^2)/(1-x-2*x^2+x^3) )); // G. C. Greubel, Feb 02 2019
-
NUM := proc(k :: integer) local i,j,n,Fun,Identity,v,A; n := 5; # <- DIMENSION Fun := (i,j)->piecewise(((j=i+1) or (i+j=n+1)),1,0); Identity := (i,j)->piecewise(i=j,1,0); v := matrix(1,n,1); A := piecewise(k>1,(matrix(n,n,Fun))^(k-1),k=1,matrix(n,n,Identity)); return(evalm(v&*A&*transpose(v))[1,1]); end:
-
LinearRecurrence[{1, 2, -1}, {5, 9, 16}, 32] (* Jean-François Alcover, Nov 22 2017 *)
-
my(x='x+O('x^40)); Vec(x*(5+4*x-3*x^2)/(1-x-2*x^2+x^3)) \\ G. C. Greubel, Feb 02 2019
-
a=(x*(5+4*x-3*x^2)/(1-x-2*x^2+x^3)).series(x, 40).coefficients(x, sparse=False); a[1:] # G. C. Greubel, Feb 02 2019
More terms from
Branko Malesevic and Ivana Jovovic (ivana121(AT)EUnet.yu), Jun 21 2007
A090992
Number of meaningful differential operations of the n-th order on the space R^7.
Original entry on oeis.org
7, 13, 24, 45, 84, 158, 296, 557, 1045, 1966, 3691, 6942, 13038, 24516, 46055, 86585, 162680, 305809, 574624, 1080106, 2029680, 3814941, 7169145, 13474502, 25322375, 47592650, 89441626, 168100324, 315917527, 593742597, 1115852904, 2097145317
Offset: 1
- G. C. Greubel, Table of n, a(n) for n = 1..1000
- B. Malesevic, Some combinatorial aspects of differential operation composition on the space R^n, Univ. Beograd, Publ. Elektrotehn. Fak., Ser. Mat. 9 (1998), 29-33.
- Branko Malesevic, Some combinatorial aspects of differential operation compositions on space R^n, arXiv:0704.0750 [math.DG], 2007.
- B. Malesevic and I. Jovovic, The Compositions of the Differential Operations and Gateaux DirectionalDerivative, arXiv:0706.0249 [math.CO], 2007.
- Joseph Myers, BMO 2008--2009 Round 1 Problem 1---Generalisation
- 2008/9 British Mathematical Olympiad Round 1: Thursday, 4 December 2008, Problem 1 [From _Joseph Myers_, Dec 23 2008]
- Index entries for linear recurrences with constant coefficients, signature (1,3,-2,-1).
Partial sums of pairwise sums of
A065455.
-
a:=[7,13,24,45];; for n in [5..40] do a[n]:=a[n-1]+3*a[n-2] - 2*a[n-3] - a[n-4]; od; a; # G. C. Greubel, Feb 02 2019
-
m:=40; R:=PowerSeriesRing(Integers(), m); Coefficients(R!( x*(7+6*x-10*x^2-4*x^3)/((1-x)*(1-3*x^2-x^3)) )); // G. C. Greubel, Feb 02 2019
-
NUM := proc(k :: integer) local i,j,n,Fun,Identity,v,A; n := 7; # <- DIMENSION Fun := (i,j)->piecewise(((j=i+1) or (i+j=n+1)),1,0); Identity := (i,j)->piecewise(i=j,1,0); v := matrix(1,n,1); A := piecewise(k>1,(matrix(n,n,Fun))^(k-1),k=1,matrix(n,n,Identity)); return(evalm(v&*A&*transpose(v))[1,1]); end:
-
LinearRecurrence[{1, 3, -2, -1}, {7, 13, 24, 45}, 32] (* Jean-François Alcover, Nov 25 2017 *)
-
my(x='x+O('x^40)); Vec(x*(7+6*x-10*x^2-4*x^3)/((1-x)*(1-3*x^2-x^3))) \\ G. C. Greubel, Feb 02 2019
-
a=(x*(7+6*x-10*x^2-4*x^3)/((1-x)*(1-3*x^2-x^3))).series(x, 40).coefficients(x, sparse=False); a[1:] # G. C. Greubel, Feb 02 2019
More terms from Branko Malesevic and Ivana Jovovic (ivana121(AT)EUnet.yu), Jun 21 2007
A377000
Array read by ascending antidiagonals: T(n,k) = number of n-esthetic numbers with k digits.
Original entry on oeis.org
1, 2, 1, 3, 3, 1, 4, 5, 4, 1, 5, 7, 8, 6, 1, 6, 9, 12, 13, 8, 1, 7, 11, 16, 21, 21, 12, 1, 8, 13, 20, 29, 36, 34, 16, 1, 9, 15, 24, 37, 52, 63, 55, 24, 1, 10, 17, 28, 45, 68, 94, 108, 89, 32, 1, 11, 19, 32, 53, 84, 126, 169, 189, 144, 48, 1, 12, 21, 36, 61, 100, 158, 232, 305, 324, 233, 64, 1
Offset: 2
Array begins (cf. De Koninck and Doyon (2009), table on p. 155):
n\k| 1 2 3 4 5 6 7 8 9 10 ...
-------------------------------------------------------
2 | 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, ... = A000012
3 | 2, 3, 4, 6, 8, 12, 16, 24, 32, 48, ... = A029744 (from n = 2)
4 | 3, 5, 8, 13, 21, 34, 55, 89, 144, 233, ... = A000045 (from n = 4)
5 | 4, 7, 12, 21, 36, 63, 108, 189, 324, 567, ... = A228879
6 | 5, 9, 16, 29, 52, 94, 169, 305, 549, 990, ...
7 | 6, 11, 20, 37, 68, 126, 232, 430, 792, 1468, ...
8 | 7, 13, 24, 45, 84, 158, 296, 557, 1045, 1966, ...
9 | 8, 15, 28, 53, 100, 190, 360, 685, 1300, 2475, ...
10 | 9, 17, 32, 61, 116, 222, 424, 813, 1556, 2986, ... = A090994
... \______ A152086 (main diagonal)
- Paolo Xausa, Table of n, a(n) for n = 2..11326 (first 150 antidiagonals, flattened).
- Jean-Marie De Koninck and Nicolas Doyon, Esthetic Numbers, Ann. Sci. Math. Québec 33 (2009), No. 2, pp. 155-164.
- Giovanni Resta, Esthetic Numbers, Numbers Aplenty, 2013.
- Branko J. Malesevic, Some combinatorial aspects of differential operation composition on the space R^n, Univ. Beograd, Publ. Elektrotehn. Fak., Ser. Mat. 9 (1998), 29-33 (arXiv version, arXiv:0704.0750 [math.DG], 2007).
Diagonal above the main diagonal appears to be
A206603.
-
A377000[n_, k_] := Round[2^k/(n+1)*Sum[If[m != (n+1)/2, Cos[#]^k*(Cot[#] + Csc[#])^2 & [Pi*m/(n+1)], 0], {m, 1, n, 2}]];
Table[A377000[n-k+1, k], {n, 2, 15}, {k, n-1}]
-
from itertools import count, islice
from functools import lru_cache
@lru_cache(maxsize=None)
def A377000_N(q,r,i):
if r==1 and i==0: return 0
if r==1: return 1
if q==2: return r+i&1^1
if i == 0: return A377000_N(q,r-1,1)
if i == q-1: return A377000_N(q,r-1,q-2)
return A377000_N(q,r-1,i-1)+A377000_N(q,r-1,i+1)
def A377000_T(n,k): return sum(A377000_N(n,k,i) for i in range(n))
def A377000_gen(): # generator of terms
for n in count(2):
for k in range(1,n):
yield A377000_T(n-k+1,k)
A377000_list = list(islice(A377000_gen(),100)) # Chai Wah Wu, Oct 21 2024
A116183
Array T(k,n) = number of meaningful differential operations of the n-th order on the space R^(3+k), for k=>0, n>0, read by antidiagonals.
Original entry on oeis.org
3, 4, 5, 5, 6, 8, 6, 9, 8, 13, 7, 10, 16, 12, 21, 8, 13, 16, 29, 16, 34, 9, 14, 24, 26, 52, 24, 55, 10, 17, 24, 45, 42, 94, 32, 89, 11, 18, 32, 42, 84, 68, 169
Offset: 1
Table begins:
k=0.|.3..5..8.13..21..34..55..89..144..233..377..610..987.1597...
k=1.|.4..6..8.12..16..24..32..48...64...96..128..192..256..384...
k=2.|.5..9.16.29..52..94.169.305..549..990.1783.3214.5790...
k=3.|.6.10.16.26..42..68.110.178..288..466..754.1220.1974...
k=4.|.7.13.24.45..84.158.296.557.1045.1966.3691.6942.13038...
k=5.|.8.14.24.42..72.126.216.378..648.1134.1944.3402..5832...
k=6.|.9.17.32.61.116.222.424.813.1556.2986.5721.10982...
k=7.|10.18.32.58.104.188.338.610.1098.1980.3566.6428...
A127935
Number of meaningful differential operations of the n-th order on the space R^(2+n).
Original entry on oeis.org
3, 6, 16, 26, 84, 126, 424, 610, 2068, 2936, 9816, 13884, 45608, 64750, 208336, 297570, 938676, 1351492, 4181752, 6071028, 18454648, 27023598, 80796336, 119300636, 351331464, 522981328, 1518742384, 2278188504, 6531607248, 9869753934, 27963677600, 42547990626
Offset: 1
a(1) = 3 = A020701(1) is number of meaningful differential operations of the first order on the space R^3, namely {div, grad, curl}.
a(2) = 6 = A090989(2) is number of meaningful differential operations of the 2nd order on the space R^4 (some of them are identically zero though).
a(3) = 16 = A090990(3) is number of meaningful differential operations of the 3rd order on the space R^5.
- R. Bott, L. W. Tu, Differential forms in algebraic topology, New York: Springer, 1982.
-
r[n_] := Table[Boole[j == i + 1 || i + j == n + 1], {i, n}, {j, n}];
Table[Total@Total@If[n == 1, IdentityMatrix[3], MatrixPower[r[n+2], n-1]], {n, 10}]
(* Andrey Zabolotskiy, Apr 30 2021 *)
Corrected from 8th term onwards. It appears the 8th and 9th terms listed were incorrectly taken from
A000045 with two numbers concatenated together, whereas the 8th, 9th and 10th terms should have been the 8th term of
A090995, the 9th of
A129638 and the 10th of
A129639.
Joseph Myers, Dec 23 2008
Name and examples corrected, terms a(11) and beyond added by
Andrey Zabolotskiy, Apr 30 2021
A153361
Number of zig-zag paths from top to bottom of a rectangle of width 12 with n rows.
Original entry on oeis.org
12, 22, 42, 80, 154, 296, 572, 1104, 2138, 4136, 8020, 15536, 30148, 58450, 113472, 220110, 427410, 829352, 1610628, 3125954, 6071028, 11784514, 22887536, 44431506, 86293452, 167532792, 325373382, 631721620, 1226878704, 2382108386
Offset: 1
-
b[n_, i_, k_] := b[n, i, k] = If[n == 0, 1, If[i == 0, Sum[b[n - 1, j, k], {j, 1, k}], If[i > 1, b[n - 1, i - 1, k], 0] + If[i < k, b[n - 1, i + 1, k], 0]]]; a[n_] := b[n, 0, 12]; Array[a, 30] (* Jean-François Alcover, Oct 10 2017, after Alois P. Heinz *)
Showing 1-7 of 7 results.
Comments