cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-6 of 6 results.

A090989 Number of meaningful differential operations of the n-th order on the space R^4.

Original entry on oeis.org

4, 6, 8, 12, 16, 24, 32, 48, 64, 96, 128, 192, 256, 384, 512, 768, 1024, 1536, 2048, 3072, 4096, 6144, 8192, 12288, 16384, 24576, 32768, 49152, 65536, 98304, 131072, 196608, 262144, 393216, 524288, 786432, 1048576, 1572864, 2097152, 3145728, 4194304, 6291456, 8388608
Offset: 1

Views

Author

Branko Malesevic, Feb 29 2004

Keywords

Crossrefs

Programs

  • GAP
    a:=[4,6];; for n in [3..40] do a[n]:=2*a[n-2]; od; a; # G. C. Greubel, Feb 02 2019
  • Magma
    m:=40; R:=PowerSeriesRing(Integers(), m); Coefficients(R!(  2*x*(2+3*x)/(1-2*x^2) )); // G. C. Greubel, Feb 02 2019
    
  • Maple
    NUM := proc(k :: integer) local i,j,n,Fun,Identity,v,A; n := 4; # <- DIMENSION Fun := (i,j)->piecewise(((j=i+1) or (i+j=n+1)),1,0); Identity := (i,j)->piecewise(i=j,1,0); v := matrix(1,n,1); A := piecewise(k>1,(matrix(n,n,Fun))^(k-1),k=1,matrix(n,n,Identity)); return(evalm(v&*A&*transpose(v))[1,1]); end:
  • Mathematica
    LinearRecurrence[{0,2}, {4,6}, 40] (* G. C. Greubel, Feb 02 2019 *)
  • PARI
    my(x='x+O('x^40)); Vec(2*x*(2+3*x)/(1-2*x^2)) \\ G. C. Greubel, Feb 02 2019
    
  • Sage
    (2*(2+3*x)/(1-2*x^2)).series(x, 40).coefficients(x, sparse=False) # G. C. Greubel, Feb 02 2019
    

Formula

a(k+2) = 2*a(k).
a(n) = b(n+3) where b(n) = gcdConv(c(n)) = Sum_{k=0..n} gcd(c(k),c(n-k)) and c(k)=A000079(k) for k>0 and c(0)=1. - Tilman Neumann, Jan 11 2009 [Updated by Sean A. Irvine, Jan 15 2025]
G.f.: 2*x*(2+3*x)/(1-2*x^2). - Colin Barker, May 03 2012
a(n) = 2*A164090(n). - R. J. Mathar, Jan 25 2023
a(n) = (sqrt(2))^n*(3/2 + sqrt(2) + (-1)^n*(3/2 - sqrt(2))). - Taras Goy, Jan 04 2025

Extensions

More terms from Tilman Neumann, Feb 06 2009

A090990 Number of meaningful differential operations of the n-th order on the space R^5.

Original entry on oeis.org

5, 9, 16, 29, 52, 94, 169, 305, 549, 990, 1783, 3214, 5790, 10435, 18801, 33881, 61048, 110009, 198224, 357194, 643633, 1159797, 2089869, 3765830, 6785771, 12227562, 22033274, 39702627, 71541613, 128913593, 232294192, 418579765
Offset: 1

Views

Author

Branko Malesevic, Feb 29 2004

Keywords

Comments

Also number of meaningful compositions of the n-th order of the differential operations and Gateaux directional derivative on the space R^4. - Branko Malesevic and Ivana Jovovic (ivana121(AT)EUnet.yu), Jun 21 2007

Crossrefs

Programs

  • GAP
    a:=[5,9,16];; for n in [4..30] do a[n]:=a[n-1]+2*a[n-2]-a[n-3]; od; a; # G. C. Greubel, Feb 02 2019
  • Magma
    m:=40; R:=PowerSeriesRing(Integers(), m); Coefficients(R!(  x*(5+4*x-3*x^2)/(1-x-2*x^2+x^3) )); // G. C. Greubel, Feb 02 2019
    
  • Maple
    NUM := proc(k :: integer) local i,j,n,Fun,Identity,v,A; n := 5; # <- DIMENSION Fun := (i,j)->piecewise(((j=i+1) or (i+j=n+1)),1,0); Identity := (i,j)->piecewise(i=j,1,0); v := matrix(1,n,1); A := piecewise(k>1,(matrix(n,n,Fun))^(k-1),k=1,matrix(n,n,Identity)); return(evalm(v&*A&*transpose(v))[1,1]); end:
  • Mathematica
    LinearRecurrence[{1, 2, -1}, {5, 9, 16}, 32] (* Jean-François Alcover, Nov 22 2017 *)
  • PARI
    my(x='x+O('x^40)); Vec(x*(5+4*x-3*x^2)/(1-x-2*x^2+x^3)) \\ G. C. Greubel, Feb 02 2019
    
  • Sage
    a=(x*(5+4*x-3*x^2)/(1-x-2*x^2+x^3)).series(x, 40).coefficients(x, sparse=False); a[1:] # G. C. Greubel, Feb 02 2019
    

Formula

a(n+3) = a(n+2) + 2*a(n+1) - a(n).
G.f.: x*(5+4*x-3*x^2)/(1-x-2*x^2+x^3). - Ralf Stephan, Aug 19 2004

Extensions

More terms from Ralf Stephan, Aug 19 2004
More terms from Branko Malesevic and Ivana Jovovic (ivana121(AT)EUnet.yu), Jun 21 2007

A129639 Number of meaningful differential operations of the k-th order on the space R^12.

Original entry on oeis.org

12, 22, 40, 74, 136, 252, 464, 860, 1584, 2936, 5408, 10024, 18464, 34224, 63040, 116848, 215232, 398944, 734848, 1362080, 2508928, 4650432, 8566016, 15877568, 29246208, 54209408, 99852800, 185082496, 340918784, 631911168, 1163969536
Offset: 12

Views

Author

Branko Malesevic, May 31 2007

Keywords

Comments

Also (starting 7,12,...) the number of zig-zag paths from top to bottom of a rectangle of width 7. [Joseph Myers, Dec 23 2008]

Crossrefs

Programs

  • Maple
    NUM := proc(k :: integer) local i,j,n,Fun,Identity,v,A; n:=12; # <- DIMENSION Fun:=(i,j)->piecewise(((j=i+1) or (i+j=n+1)),1,0); Identity:=(i,j)->piecewise(i=j,1,0); v:=matrix(1,n,1); A:=piecewise(k>1,(matrix(n,n,Fun))^(k-1),k=1,matrix(n,n,Identity)); return(evalm(v&*A&*transpose(v))[1,1]); end:
  • Mathematica
    f[k_] := f[k] = If[k <= 17, {12, 22, 40, 74, 136, 252}[[k-11]], 6 f[k-2] - 10 f[k-4] + 4 f[k-6]];
    f /@ Range[12, 42] (* Jean-François Alcover, Apr 21 2020 *)

Formula

f(k+6) = 6*f(k+4)-10*f(k+2)+4*f(k).
Empirical G.f.: 2*x^12*(6+11*x-4*x^2-7*x^3)/(1-4*x^2+2*x^4). [Colin Barker, May 07 2012]

Extensions

More terms from Joseph Myers, Dec 23 2008

A377000 Array read by ascending antidiagonals: T(n,k) = number of n-esthetic numbers with k digits.

Original entry on oeis.org

1, 2, 1, 3, 3, 1, 4, 5, 4, 1, 5, 7, 8, 6, 1, 6, 9, 12, 13, 8, 1, 7, 11, 16, 21, 21, 12, 1, 8, 13, 20, 29, 36, 34, 16, 1, 9, 15, 24, 37, 52, 63, 55, 24, 1, 10, 17, 28, 45, 68, 94, 108, 89, 32, 1, 11, 19, 32, 53, 84, 126, 169, 189, 144, 48, 1, 12, 21, 36, 61, 100, 158, 232, 305, 324, 233, 64, 1
Offset: 2

Views

Author

Paolo Xausa, Oct 12 2024

Keywords

Comments

A number is n-esthetic if, when written in base n, adjacent digits differ by 1: see De Koninck and Doyon (2009), where T(n,k) is denoted by N_q(r).

Examples

			Array begins (cf. De Koninck and Doyon (2009), table on p. 155):
  n\k| 1   2   3   4    5    6    7    8     9    10  ...
  -------------------------------------------------------
   2 | 1,  1,  1,  1,   1,   1,   1,   1,    1,    1, ... = A000012
   3 | 2,  3,  4,  6,   8,  12,  16,  24,   32,   48, ... = A029744 (from n = 2)
   4 | 3,  5,  8, 13,  21,  34,  55,  89,  144,  233, ... = A000045 (from n = 4)
   5 | 4,  7, 12, 21,  36,  63, 108, 189,  324,  567, ... = A228879
   6 | 5,  9, 16, 29,  52,  94, 169, 305,  549,  990, ...
   7 | 6, 11, 20, 37,  68, 126, 232, 430,  792, 1468, ...
   8 | 7, 13, 24, 45,  84, 158, 296, 557, 1045, 1966, ...
   9 | 8, 15, 28, 53, 100, 190, 360, 685, 1300, 2475, ...
  10 | 9, 17, 32, 61, 116, 222, 424, 813, 1556, 2986, ... = A090994
  ...                                               \______ A152086 (main diagonal)
		

Crossrefs

Cf. A000012 (row n = 2), A029744 (row n = 3), A000045 (row n = 4), A228879 (row n = 5), A090994 (row n = 10).
Cf. A102699, A152086 (main diagonal).
Diagonal above the main diagonal appears to be A206603.

Programs

  • Mathematica
    A377000[n_, k_] := Round[2^k/(n+1)*Sum[If[m != (n+1)/2, Cos[#]^k*(Cot[#] + Csc[#])^2 & [Pi*m/(n+1)], 0], {m, 1, n, 2}]];
    Table[A377000[n-k+1, k], {n, 2, 15}, {k, n-1}]
  • Python
    from itertools import count, islice
    from functools import lru_cache
    @lru_cache(maxsize=None)
    def A377000_N(q,r,i):
        if r==1 and i==0: return 0
        if r==1: return 1
        if q==2: return r+i&1^1
        if i == 0: return A377000_N(q,r-1,1)
        if i == q-1: return A377000_N(q,r-1,q-2)
        return A377000_N(q,r-1,i-1)+A377000_N(q,r-1,i+1)
    def A377000_T(n,k): return sum(A377000_N(n,k,i) for i in range(n))
    def A377000_gen(): # generator of terms
        for n in count(2):
            for k in range(1,n):
                yield A377000_T(n-k+1,k)
    A377000_list = list(islice(A377000_gen(),100)) # Chai Wah Wu, Oct 21 2024

Formula

All of the following formulas are taken from De Koninck and Doyon (2009).
T(n,k) = 2^k/(n+1) * Sum_{m=1..n, m odd, m != (n+1)/2} cos(p)^k*(cot(p) + csc(p))^2, where p = Pi*m/(n+1).
T(n,1) = n - 1.
T(2,k) = 1.
T(3,k) = 2^((k+1)/2) if k is odd, 3*2^((k-2)/2) if k is even = A029744(k+1).
T(4,k) = A000045(k+3).
T(5,k) = 4*3^((k-1)/2) if k is odd, 7*3^((k-2)/2) if k is even = A228879(k-1).
Conjectures from Chai Wah Wu, Oct 21 2024: (Start)
Conjecture 1: For even n, T(n,k) is the number of meaningful differential operations of the k-th order on the space R^(n-1).
Conjecture 2: For each n, the row T(n,k) satisfies a linear recurrence. For example:
T(6,k) = T(6,k-1) + 2*T(6,k-2) - T(6,k-3) for k > 3 (A090990).
T(7,k) = 4*T(7,k-2) - 2*T(7,k-4) for k > 4.
T(8,k) = T(8,k-1) + 3*T(8,k-2) - 2*T(8,k-3) - T(8,k-4) for k > 4 (A090992).
T(9,k) = 5*T(9,k-2) - 5*T(9,k-4) for k > 4.
T(10,k) = T(10,k-1) + 4*T(10,k-2) - 3*T(10,k-3) - 3*T(10,k-4) + T(10,k-5) for k > 5.
T(11,k) = 6*T(11,k-2) - 9*T(11,k-4) + 2*T(11,k-6) for k > 6.
T(12,k) = T(12,k-1) + 5*T(12,k-2) - 4*T(12,k-3) - 6*T(12,k-4) + 3*T(12,k-5) + T(12,k-6) for k > 6 (A129638).
...
Note that for even n, Conjecture 1 implies Conjecture 2 due to (Malesevic, 1998).
Conjecture 3: T(n,n-2) = A182555(n-2). (End)

A116183 Array T(k,n) = number of meaningful differential operations of the n-th order on the space R^(3+k), for k=>0, n>0, read by antidiagonals.

Original entry on oeis.org

3, 4, 5, 5, 6, 8, 6, 9, 8, 13, 7, 10, 16, 12, 21, 8, 13, 16, 29, 16, 34, 9, 14, 24, 26, 52, 24, 55, 10, 17, 24, 45, 42, 94, 32, 89, 11, 18, 32, 42, 84, 68, 169
Offset: 1

Views

Author

Jonathan Vos Post, Apr 08 2007

Keywords

Comments

Two more rows can be obtained from A129638 and A129639.

Examples

			Table begins:
k=0.|.3..5..8.13..21..34..55..89..144..233..377..610..987.1597...
k=1.|.4..6..8.12..16..24..32..48...64...96..128..192..256..384...
k=2.|.5..9.16.29..52..94.169.305..549..990.1783.3214.5790...
k=3.|.6.10.16.26..42..68.110.178..288..466..754.1220.1974...
k=4.|.7.13.24.45..84.158.296.557.1045.1966.3691.6942.13038...
k=5.|.8.14.24.42..72.126.216.378..648.1134.1944.3402..5832...
k=6.|.9.17.32.61.116.222.424.813.1556.2986.5721.10982...
k=7.|10.18.32.58.104.188.338.610.1098.1980.3566.6428...
		

Crossrefs

k=0 row is A020701. k=1 row is A090989. k=2 row is A090990. k=3 row is A090991. k=4 row is A090992. k=5 row is A090993. k=6 row is A090994. k=7 row is A090995.
Diagonal: A127935.

A153340 Number of zig-zag paths from top to bottom of a rectangle of width 8 with n rows.

Original entry on oeis.org

8, 14, 26, 48, 90, 168, 316, 592, 1114, 2090, 3932, 7382, 13884, 26076, 49032, 92110, 173170, 325360, 611618, 1149248, 2160212, 4059360, 7629882, 14338290, 26949004, 50644750, 95185300, 178883252, 336200648, 631835054, 1187485194, 2231705808
Offset: 1

Views

Author

Joseph Myers, Dec 24 2008

Keywords

Comments

Number of words of length n using an 8-symbol alphabet where neighboring letters are neighbors in the alphabet. - Andrew Howroyd, Apr 17 2017

Crossrefs

Column 8 of A220062.
Twice A090992.

Programs

Formula

G.f.: 2*x*(4+3*x-6*x^2-2*x^3)/((1-x)*(1-3*x^2-x^3)). - Colin Barker, May 10 2012
Showing 1-6 of 6 results.