cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 13 results. Next

A090995 Number of meaningful differential operations of the n-th order on the space R^10.

Original entry on oeis.org

10, 18, 32, 58, 104, 188, 338, 610, 1098, 1980, 3566, 6428, 11580, 20870, 37602, 67762, 122096, 220018, 396448, 714388, 1287266, 2319594, 4179738, 7531660, 13571542, 24455124, 44066548, 79405254, 143083226, 257827186, 464588384
Offset: 1

Views

Author

Branko Malesevic, Feb 29 2004

Keywords

Comments

Also (starting 6,10,...) the number of zig-zag paths from top to bottom of a rectangle of width 6. - Joseph Myers, Dec 23 2008
Number of walks of length n on the path graph P_6. - Andrew Howroyd, Apr 17 2017

Crossrefs

Column 6 of A220062.

Programs

  • GAP
    a:=[10,18,32];; for n in [4..30] do a[n]:=a[n-1]+2*a[n-2]-a[n-3]; od; a; # G. C. Greubel, Feb 02 2019
  • Magma
    m:=40; R:=PowerSeriesRing(Integers(), m); Coefficients(R!(  2*x*(5+4*x-3*x^2)/(1-x-2*x^2+x^3) )); // G. C. Greubel, Feb 02 2019
    
  • Maple
    NUM := proc(k :: integer) local i,j,n,Fun,Identity,v,A; n := 10; # <- DIMENSION Fun := (i,j)->piecewise(((j=i+1) or (i+j=n+1)),1,0); Identity := (i,j)->piecewise(i=j,1,0); v := matrix(1,n,1); A := piecewise(k>1,(matrix(n,n,Fun))^(k-1),k=1,matrix(n,n,Identity)); return(evalm(v&*A&*transpose(v))[1,1]); end:
  • Mathematica
    a[n_ /; n <= 6] := {10, 18, 32, 58, 104, 188}[[n]]; a[n_] := a[n] = 5*a[n-2] - 6*a[n-4] + a[n-6]; Array[a, 31] (* Jean-François Alcover, Oct 07 2017 *)
    2*LinearRecurrence[{1,2,-1}, {5,9,16}, 40] (* G. C. Greubel, Feb 02 2019 *)
  • PARI
    my(x='x+O('x^40)); Vec(2*x*(5+4*x-3*x^2)/(1-x-2*x^2+x^3)) \\ G. C. Greubel, Feb 02 2019
    
  • Sage
    a=(2*x*(5+4*x-3*x^2)/(1-x-2*x^2+x^3)).series(x, 40).coefficients(x, sparse=False); a[1:] # G. C. Greubel, Feb 02 2019
    

Formula

Equals 2 * A090990.
a(k+6) = 5*a(k+4) - 6*a(k+2) + a(k).
From Colin Barker, May 03 2012: (Start)
a(n) = a(n-1) + 2*a(n-2) - a(n-3).
G.f.: 2*x*(5+4*x-3*x^2)/(1-x-2*x^2+x^3). (End)

Extensions

More terms from Joseph Myers, Dec 23 2008

A164090 a(n) = 2*a(n-2) for n > 2; a(1) = 2, a(2) = 3.

Original entry on oeis.org

2, 3, 4, 6, 8, 12, 16, 24, 32, 48, 64, 96, 128, 192, 256, 384, 512, 768, 1024, 1536, 2048, 3072, 4096, 6144, 8192, 12288, 16384, 24576, 32768, 49152, 65536, 98304, 131072, 196608, 262144, 393216, 524288, 786432, 1048576, 1572864, 2097152, 3145728
Offset: 1

Views

Author

Klaus Brockhaus, Aug 09 2009

Keywords

Comments

Interleaving of A000079 without initial 1 and A007283.
Agrees from a(2) onward with A145751 for all terms listed there (up to 65536). Apparently equal to 2, 3 followed by A090989. Equals 2 followed by A163978.
Binomial transform is A000129 without first two terms, second binomial transform is A020727, third binomial transform is A164033, fourth binomial transform is A164034, fifth binomial transform is A164035.
Number of achiral necklaces or bracelets with n beads using up to 2 colors. For n=5, the eight achiral necklaces or bracelets are AAAAA, AAAAB, AAABB, AABAB, AABBB, ABABB, ABBBB, and BBBBB. - Robert A. Russell, Sep 22 2018

Crossrefs

Programs

  • Magma
    [ n le 2 select n+1 else 2*Self(n-2): n in [1..42] ];
    
  • Mathematica
    a[n_] := If[EvenQ[n], 3*2^(n/2 - 1), 2^((n + 1)/2)]; Array[a, 42] (* Jean-François Alcover, Oct 12 2017 *)
    RecurrenceTable[{a[1]==2,a[2]==3,a[n]==2a[n-2]},a,{n,50}] (* or *) LinearRecurrence[{0,2},{2,3},50] (* Harvey P. Dale, Mar 01 2018 *)
  • PARI
    a(n) = if(n%2,2,3) * 2^((n-1)\2); \\ Andrew Howroyd, Oct 07 2017

Formula

a(n) = A029744(n+1).
a(n) = A052955(n-1) + 1.
a(n) = A027383(n-2) + 2 for n > 1.
a(n) = A060482(n-1) + 3 for n > 3.
a(n) = A070875(n) - A070875(n-1).
a(n) = (7 - (-1)^n)*2^((1/4)*(2*n - 1 + (-1)^n))/4.
G.f.: x*(2+3*x)/(1-2*x^2).
a(n) = A063759(n-1), n>1. - R. J. Mathar, Aug 17 2009
Sum_{n>=1} 1/a(n) = 5/3. - Amiram Eldar, Mar 28 2022

A090994 Number of meaningful differential operations of the n-th order on the space R^9.

Original entry on oeis.org

9, 17, 32, 61, 116, 222, 424, 813, 1556, 2986, 5721, 10982, 21053, 40416, 77505, 148785, 285380, 547810, 1050876, 2017126, 3869845, 7427671, 14250855, 27351502, 52479500, 100719775, 193258375, 370895324, 711682501, 1365808847, 2620797529
Offset: 1

Views

Author

Branko Malesevic, Feb 29 2004

Keywords

Comments

Also number of meaningful compositions of the n-th order of the differential operations and Gateaux directional derivative on the space R^8. - Branko Malesevic and Ivana Jovovic (ivana121(AT)EUnet.yu), Jun 21 2007
Also (starting 5,9,...) the number of zig-zag paths from top to bottom of a rectangle of width 10, whose color is that of the top right corner. [From Joseph Myers, Dec 23 2008]
Also, number of n-digit terms in A033075 (stated without proof in A033075). - Zak Seidov, Feb 02 2011

Crossrefs

Programs

  • GAP
    a:=[9,17,32,61,116];; for n in [6..40] do a[n]:=a[n-1]+4*a[n-2] - 3*a[n-3]-3*a[n-4]+a[n-5]; od; a; # G. C. Greubel, Feb 02 2019
  • Magma
    m:=40; R:=PowerSeriesRing(Integers(), m); Coefficients(R!(  x*(9+8*x-21*x^2-12*x^3+5*x^4)/(1-x-4*x^2+3*x^3+3*x^4-x^5) )); // G. C. Greubel, Feb 02 2019
    
  • Maple
    NUM := proc(k :: integer) local i,j,n,Fun,Identity,v,A; n := 9; # <- DIMENSION Fun := (i,j)->piecewise(((j=i+1) or (i+j=n+1)),1,0); Identity := (i,j)->piecewise(i=j,1,0); v := matrix(1,n,1); A := piecewise(k>1,(matrix(n,n,Fun))^(k-1),k=1,matrix(n,n,Identity)); return(evalm(v&*A&*transpose(v))[1,1]); end:
  • Mathematica
    LinearRecurrence[{1, 4, -3, -3, 1}, {9, 17, 32, 61, 116}, 31] (* Jean-François Alcover, Nov 20 2017 *)
  • PARI
    my(x='x+O('x^40)); Vec(x*(9+8*x-21*x^2-12*x^3+5*x^4)/(1-x-4*x^2 +3*x^3+3*x^4-x^5)) \\ G. C. Greubel, Feb 02 2019
    
  • Sage
    a=(x*(9+8*x-21*x^2-12*x^3+5*x^4)/(1-x-4*x^2+3*x^3+3*x^4-x^5)).series(x, 40).coefficients(x, sparse=False); a[1:] # G. C. Greubel, Feb 02 2019
    

Formula

a(k+5) = a(k+4) + 4*a(k+3) - 3*a(k+2) - 3*a(k+1) + a(k).
G.f.: x*(9+8*x-21*x^2-12*x^3+5*x^4)/(1-x-4*x^2+3*x^3+3*x^4-x^5). - Maksym Voznyy (voznyy(AT)mail.ru), Aug 11 2009; corrected by R. J. Mathar, Sep 16 2009

Extensions

More terms from Joseph Myers, Dec 23 2008

A063759 Spherical growth series for modular group.

Original entry on oeis.org

1, 3, 4, 6, 8, 12, 16, 24, 32, 48, 64, 96, 128, 192, 256, 384, 512, 768, 1024, 1536, 2048, 3072, 4096, 6144, 8192, 12288, 16384, 24576, 32768, 49152, 65536, 98304, 131072, 196608, 262144, 393216, 524288, 786432, 1048576, 1572864, 2097152
Offset: 0

Views

Author

N. J. A. Sloane, Aug 14 2001

Keywords

Comments

Also number of sequences S of length n with entries in {1,..,q} where q = 3, satisfying the condition that adjacent terms differ in absolute value by exactly 1, see examples. - W. Edwin Clark, Oct 17 2008

Examples

			For n = 2 the a(2) = 4 sequences are (1,2),(2,1),(2,3),(3,2). - _W. Edwin Clark_, Oct 17 2008
From _Joerg Arndt_, Nov 23 2012: (Start)
There are a(6) = 16 such words of length 6:
[ 1]   [ 1 2 1 2 1 2 ]
[ 2]   [ 1 2 1 2 3 2 ]
[ 3]   [ 1 2 3 2 1 2 ]
[ 4]   [ 1 2 3 2 3 2 ]
[ 5]   [ 2 1 2 1 2 1 ]
[ 6]   [ 2 1 2 1 2 3 ]
[ 7]   [ 2 1 2 3 2 1 ]
[ 8]   [ 2 1 2 3 2 3 ]
[ 9]   [ 2 3 2 1 2 1 ]
[10]   [ 2 3 2 1 2 3 ]
[11]   [ 2 3 2 3 2 1 ]
[12]   [ 2 3 2 3 2 3 ]
[13]   [ 3 2 1 2 1 2 ]
[14]   [ 3 2 1 2 3 2 ]
[15]   [ 3 2 3 2 1 2 ]
[16]   [ 3 2 3 2 3 2 ]
(End)
		

References

  • P. de la Harpe, Topics in Geometric Group Theory, Univ. Chicago Press, 2000, p. 156.

Crossrefs

The sequence (ternary strings) seems to be related to A029744 and A090989.

Programs

  • Haskell
    import Data.List (transpose)
    a063759 n = a063759_list !! n
    a063759_list = concat $ transpose [a151821_list, a007283_list]
    -- Reinhard Zumkeller, Dec 16 2013
    
  • Mathematica
    CoefficientList[Series[(1+3*x+2*x^2)/(1-2*x^2),{x,0,40}],x](* Jean-François Alcover, Mar 21 2011 *)
    Join[{1},Transpose[NestList[{Last[#],2First[#]}&,{3,4},40]][[1]]] (* Harvey P. Dale, Oct 22 2011 *)
  • PARI
    a(n)=([0,1; 2,0]^n*[1;3])[1,1] \\ Charles R Greathouse IV, Feb 09 2017

Formula

G.f.: (1+3*x+2*x^2)/(1-2*x^2).
a(n) = 2*a(n-2), n>2. - Harvey P. Dale, Oct 22 2011
a(2*n) = A151821(n+1); a(2*n+1) = A007283(n). - Reinhard Zumkeller, Dec 16 2013

Extensions

Information from A145751 included by Joerg Arndt, Dec 03 2012

A090991 Number of meaningful differential operations of the n-th order on the space R^6.

Original entry on oeis.org

6, 10, 16, 26, 42, 68, 110, 178, 288, 466, 754, 1220, 1974, 3194, 5168, 8362, 13530, 21892, 35422, 57314, 92736, 150050, 242786, 392836, 635622, 1028458, 1664080, 2692538, 4356618, 7049156, 11405774, 18454930, 29860704, 48315634, 78176338, 126491972
Offset: 1

Views

Author

Branko Malesevic, Feb 29 2004

Keywords

Comments

Apparently a(n) = A054886(n+2) for n=1..1000. - Georg Fischer, Oct 06 2018

Crossrefs

Essentially the same as A006355, A047992 and A078642.

Programs

  • GAP
    a:=[6,10];; for n in [3..40] do a[n]:=a[n-1]+a[n-2]; od; a; # Muniru A Asiru, Oct 06 2018
    
  • Magma
    m:=40; R:=PowerSeriesRing(Integers(), m); Coefficients(R!(  2*x*(3+2*x)/(1-x-x^2) )); // G. C. Greubel, Feb 02 2019
    
  • Maple
    NUM := proc(k :: integer) local i,j,n,Fun,Identity,v,A; n := 6; # <- DIMENSION Fun := (i,j)->piecewise(((j=i+1) or (i+j=n+1)),1,0); Identity := (i,j)->piecewise(i=j,1,0); v := matrix(1,n,1); A := piecewise(k>1,(matrix(n,n,Fun))^(k-1),k=1,matrix(n,n,Identity)); return(evalm(v&*A&*transpose(v))[1,1]); end:
  • Mathematica
    CoefficientList[Series[2*(3+2z)/(1-z-z^2), {z, 0, 40}], z] (* Vladimir Joseph Stephan Orlovsky, Jun 11 2011 *)
  • PARI
    my(x='x+O('x^40)); Vec(2*x*(3+2*x)/(1-x-x^2)) \\ G. C. Greubel, Feb 02 2019
    
  • Sage
    (2*(3+2*x)/(1-x-x^2)).series(x, 40).coefficients(x, sparse=False) # G. C. Greubel, Feb 02 2019

Formula

a(k+4) = 3*a(k+2) - a(k).
a(k) = 2*Fibonacci(k+3).
From Philippe Deléham, Nov 19 2008: (Start)
a(n) = a(n-1) + a(n-2), n>2, where a(1)=6, a(2)=10.
G.f.: 2*x*(3+2*x)/(1-x-x^2). (End)
E.g.f.: 4*exp(x/2)*(5*cosh(sqrt(5)*x/2) + 2*sqrt(5)*sinh(sqrt(5)*x/2))/5 - 4. - Stefano Spezia, Apr 18 2022

A090990 Number of meaningful differential operations of the n-th order on the space R^5.

Original entry on oeis.org

5, 9, 16, 29, 52, 94, 169, 305, 549, 990, 1783, 3214, 5790, 10435, 18801, 33881, 61048, 110009, 198224, 357194, 643633, 1159797, 2089869, 3765830, 6785771, 12227562, 22033274, 39702627, 71541613, 128913593, 232294192, 418579765
Offset: 1

Views

Author

Branko Malesevic, Feb 29 2004

Keywords

Comments

Also number of meaningful compositions of the n-th order of the differential operations and Gateaux directional derivative on the space R^4. - Branko Malesevic and Ivana Jovovic (ivana121(AT)EUnet.yu), Jun 21 2007

Crossrefs

Programs

  • GAP
    a:=[5,9,16];; for n in [4..30] do a[n]:=a[n-1]+2*a[n-2]-a[n-3]; od; a; # G. C. Greubel, Feb 02 2019
  • Magma
    m:=40; R:=PowerSeriesRing(Integers(), m); Coefficients(R!(  x*(5+4*x-3*x^2)/(1-x-2*x^2+x^3) )); // G. C. Greubel, Feb 02 2019
    
  • Maple
    NUM := proc(k :: integer) local i,j,n,Fun,Identity,v,A; n := 5; # <- DIMENSION Fun := (i,j)->piecewise(((j=i+1) or (i+j=n+1)),1,0); Identity := (i,j)->piecewise(i=j,1,0); v := matrix(1,n,1); A := piecewise(k>1,(matrix(n,n,Fun))^(k-1),k=1,matrix(n,n,Identity)); return(evalm(v&*A&*transpose(v))[1,1]); end:
  • Mathematica
    LinearRecurrence[{1, 2, -1}, {5, 9, 16}, 32] (* Jean-François Alcover, Nov 22 2017 *)
  • PARI
    my(x='x+O('x^40)); Vec(x*(5+4*x-3*x^2)/(1-x-2*x^2+x^3)) \\ G. C. Greubel, Feb 02 2019
    
  • Sage
    a=(x*(5+4*x-3*x^2)/(1-x-2*x^2+x^3)).series(x, 40).coefficients(x, sparse=False); a[1:] # G. C. Greubel, Feb 02 2019
    

Formula

a(n+3) = a(n+2) + 2*a(n+1) - a(n).
G.f.: x*(5+4*x-3*x^2)/(1-x-2*x^2+x^3). - Ralf Stephan, Aug 19 2004

Extensions

More terms from Ralf Stephan, Aug 19 2004
More terms from Branko Malesevic and Ivana Jovovic (ivana121(AT)EUnet.yu), Jun 21 2007

A090992 Number of meaningful differential operations of the n-th order on the space R^7.

Original entry on oeis.org

7, 13, 24, 45, 84, 158, 296, 557, 1045, 1966, 3691, 6942, 13038, 24516, 46055, 86585, 162680, 305809, 574624, 1080106, 2029680, 3814941, 7169145, 13474502, 25322375, 47592650, 89441626, 168100324, 315917527, 593742597, 1115852904, 2097145317
Offset: 1

Views

Author

Branko Malesevic, Feb 29 2004

Keywords

Comments

Also number of meaningful compositions of the n-th order of the differential operations and Gateaux directional derivative on the space R^6. - Branko Malesevic and Ivana Jovovic (ivana121(AT)EUnet.yu), Jun 21 2007
Also (starting 4,7,...) the number of zig-zag paths from top to bottom of a rectangle of width 8, whose color is that of the top right corner. - Joseph Myers, Dec 23 2008

Crossrefs

Partial sums of pairwise sums of A065455.

Programs

  • GAP
    a:=[7,13,24,45];; for n in [5..40] do a[n]:=a[n-1]+3*a[n-2] - 2*a[n-3] - a[n-4]; od; a; # G. C. Greubel, Feb 02 2019
  • Magma
    m:=40; R:=PowerSeriesRing(Integers(), m); Coefficients(R!(  x*(7+6*x-10*x^2-4*x^3)/((1-x)*(1-3*x^2-x^3)) )); // G. C. Greubel, Feb 02 2019
    
  • Maple
    NUM := proc(k :: integer) local i,j,n,Fun,Identity,v,A; n := 7; # <- DIMENSION Fun := (i,j)->piecewise(((j=i+1) or (i+j=n+1)),1,0); Identity := (i,j)->piecewise(i=j,1,0); v := matrix(1,n,1); A := piecewise(k>1,(matrix(n,n,Fun))^(k-1),k=1,matrix(n,n,Identity)); return(evalm(v&*A&*transpose(v))[1,1]); end:
  • Mathematica
    LinearRecurrence[{1, 3, -2, -1}, {7, 13, 24, 45}, 32] (* Jean-François Alcover, Nov 25 2017 *)
  • PARI
    my(x='x+O('x^40)); Vec(x*(7+6*x-10*x^2-4*x^3)/((1-x)*(1-3*x^2-x^3))) \\ G. C. Greubel, Feb 02 2019
    
  • Sage
    a=(x*(7+6*x-10*x^2-4*x^3)/((1-x)*(1-3*x^2-x^3))).series(x, 40).coefficients(x, sparse=False); a[1:] # G. C. Greubel, Feb 02 2019
    

Formula

a(n+4) = a(n+3) + 3*a(n+2) - 2*a(n+1) - a(n).
G.f.: x*(7+6*x-10*x^2-4*x^3)/((1-x)*(1-3*x^2-x^3)). - Colin Barker, Mar 08 2012

Extensions

More terms from Branko Malesevic and Ivana Jovovic (ivana121(AT)EUnet.yu), Jun 21 2007
More terms from Joseph Myers, Dec 23 2008

A090993 Number of meaningful differential operations of the n-th order on the space R^8.

Original entry on oeis.org

8, 14, 24, 42, 72, 126, 216, 378, 648, 1134, 1944, 3402, 5832, 10206, 17496, 30618, 52488, 91854, 157464, 275562, 472392, 826686, 1417176, 2480058, 4251528, 7440174, 12754584, 22320522, 38263752, 66961566, 114791256, 200884698
Offset: 1

Views

Author

Branko Malesevic, Feb 29 2004

Keywords

Comments

Also (starting 5,8,...) the number of zig-zag paths from top to bottom of a rectangle of width 5. - Joseph Myers, Dec 23 2008
Number of walks of length n on the path graph P_5. - Andrew Howroyd, Apr 17 2017

Crossrefs

Column 5 of A220062.

Programs

  • GAP
    a:=[8,14];; for n in [3..40] do a[n]:=3*a[n-2]; od; a; # G. C. Greubel, Feb 02 2019
  • Magma
    m:=40; R:=PowerSeriesRing(Integers(), m); Coefficients(R!(  2*x*(4+7*x)/(1-3*x^2) )); // G. C. Greubel, Feb 02 2019
    
  • Maple
    NUM := proc(k :: integer) local i,j,n,Fun,Identity,v,A; n := 8; # <- DIMENSION Fun := (i,j)->piecewise(((j=i+1) or (i+j=n+1)),1,0); Identity := (i,j)->piecewise(i=j,1,0); v := matrix(1,n,1); A := piecewise(k>1,(matrix(n,n,Fun))^(k-1),k=1,matrix(n,n,Identity)); return(evalm(v&*A&*transpose(v))[1,1]); end:
  • Mathematica
    LinearRecurrence[{0, 3}, {8, 14}, 32] (* Jean-François Alcover, Jul 01 2018 *)
  • PARI
    my(x='x+O('x^40)); Vec(2*x*(4+7*x)/(1-3*x^2)) \\ G. C. Greubel, Feb 02 2019
    
  • Sage
    a=(2*x*(4+7*x)/(1-3*x^2)).series(x, 40).coefficients(x, sparse=False); a[1:] # G. C. Greubel, Feb 02 2019
    

Formula

a(n+4) = 4*a(n+2) - 3*a(n).
From Colin Barker, May 03 2012: (Start)
a(n) = 3*a(n-2).
G.f.: 2*x*(4+7*x)/(1-3*x^2). (End)
a(n) = (11+3*(-1)^n) * 3^floor((n-1)/2). - Ralf Stephan, Jul 19 2013

Extensions

More terms from Joseph Myers, Dec 23 2008

A129638 Number of meaningful differential operations of the k-th order on the space R^11.

Original entry on oeis.org

11, 21, 40, 77, 148, 286, 552, 1069, 2068, 4010, 7768, 15074, 29225, 56736, 110055, 213705, 414676, 805314, 1562977, 3035514, 5892257, 11443768, 22215753, 43146726, 83766396, 162686691, 315860810, 613439352, 1191054193, 2313133481
Offset: 11

Views

Author

Branko Malesevic, May 31 2007

Keywords

Comments

Also number of meaningful compositions of the k-th order of the differential operations and Gateaux directional derivative on the space R^10. - Branko Malesevic and Ivana Jovovic (ivana121(AT)EUnet.yu), Jun 20 2007
Also (starting 6,11,...) the number of zig-zag paths from top to bottom of a rectangle of width 12, whose color is that of the top right corner. [Joseph Myers, Dec 23 2008]

Crossrefs

Programs

  • Maple
    NUM := proc(k :: integer) local i,j,n,Fun,Identity,v,A; n:=11; # <- DIMENSION Fun:=(i,j)->piecewise(((j=i+1) or (i+j=n+1)),1,0); Identity:=(i,j)->piecewise(i=j,1,0); v:=matrix(1,n,1); A:=piecewise(k>1,(matrix(n,n,Fun))^(k-1),k=1,matrix(n,n,Identity)); return(evalm(v&*A&*transpose(v))[1,1]); end:
  • Mathematica
    LinearRecurrence[{1, 5, -4, -6, 3, 1}, {11, 21, 40, 77, 148, 286}, 30] (* Jean-François Alcover, Oct 10 2017 *)

Formula

a(k+6) = a(k+5) +5*a(k+4) -4*a(k+3) -6*a(k+2) +3*a(k+1) +a(k).
G.f.: -x^11*(6*x^5+21*x^4-24*x^3-36*x^2+10*x+11)/(x^6+3*x^5-6*x^4-4*x^3+5*x^2+x-1). [Colin Barker, Jul 08 2012]

Extensions

More terms from Branko Malesevic and Ivana Jovovic (ivana121(AT)EUnet.yu), Jun 20 2007
More terms from Joseph Myers, Dec 23 2008

A129639 Number of meaningful differential operations of the k-th order on the space R^12.

Original entry on oeis.org

12, 22, 40, 74, 136, 252, 464, 860, 1584, 2936, 5408, 10024, 18464, 34224, 63040, 116848, 215232, 398944, 734848, 1362080, 2508928, 4650432, 8566016, 15877568, 29246208, 54209408, 99852800, 185082496, 340918784, 631911168, 1163969536
Offset: 12

Views

Author

Branko Malesevic, May 31 2007

Keywords

Comments

Also (starting 7,12,...) the number of zig-zag paths from top to bottom of a rectangle of width 7. [Joseph Myers, Dec 23 2008]

Crossrefs

Programs

  • Maple
    NUM := proc(k :: integer) local i,j,n,Fun,Identity,v,A; n:=12; # <- DIMENSION Fun:=(i,j)->piecewise(((j=i+1) or (i+j=n+1)),1,0); Identity:=(i,j)->piecewise(i=j,1,0); v:=matrix(1,n,1); A:=piecewise(k>1,(matrix(n,n,Fun))^(k-1),k=1,matrix(n,n,Identity)); return(evalm(v&*A&*transpose(v))[1,1]); end:
  • Mathematica
    f[k_] := f[k] = If[k <= 17, {12, 22, 40, 74, 136, 252}[[k-11]], 6 f[k-2] - 10 f[k-4] + 4 f[k-6]];
    f /@ Range[12, 42] (* Jean-François Alcover, Apr 21 2020 *)

Formula

f(k+6) = 6*f(k+4)-10*f(k+2)+4*f(k).
Empirical G.f.: 2*x^12*(6+11*x-4*x^2-7*x^3)/(1-4*x^2+2*x^4). [Colin Barker, May 07 2012]

Extensions

More terms from Joseph Myers, Dec 23 2008
Showing 1-10 of 13 results. Next