A090995 Number of meaningful differential operations of the n-th order on the space R^10.
10, 18, 32, 58, 104, 188, 338, 610, 1098, 1980, 3566, 6428, 11580, 20870, 37602, 67762, 122096, 220018, 396448, 714388, 1287266, 2319594, 4179738, 7531660, 13571542, 24455124, 44066548, 79405254, 143083226, 257827186, 464588384
Offset: 1
Links
- G. C. Greubel, Table of n, a(n) for n = 1..1000
- B. Malesevic, Some combinatorial aspects of differential operation composition on the space R^n, Univ. Beograd, Publ. Elektrotehn. Fak., Ser. Mat. 9 (1998), 29-33.
- Branko Malesevic, Some combinatorial aspects of differential operation compositions on space R^n, arXiv:0704.0750 [math.DG], 2007.
- Joseph Myers, BMO 2008--2009 Round 1 Problem 1---Generalisation
- Index entries for linear recurrences with constant coefficients, signature (1,2,-1).
Programs
-
GAP
a:=[10,18,32];; for n in [4..30] do a[n]:=a[n-1]+2*a[n-2]-a[n-3]; od; a; # G. C. Greubel, Feb 02 2019
-
Magma
m:=40; R
:=PowerSeriesRing(Integers(), m); Coefficients(R!( 2*x*(5+4*x-3*x^2)/(1-x-2*x^2+x^3) )); // G. C. Greubel, Feb 02 2019 -
Maple
NUM := proc(k :: integer) local i,j,n,Fun,Identity,v,A; n := 10; # <- DIMENSION Fun := (i,j)->piecewise(((j=i+1) or (i+j=n+1)),1,0); Identity := (i,j)->piecewise(i=j,1,0); v := matrix(1,n,1); A := piecewise(k>1,(matrix(n,n,Fun))^(k-1),k=1,matrix(n,n,Identity)); return(evalm(v&*A&*transpose(v))[1,1]); end:
-
Mathematica
a[n_ /; n <= 6] := {10, 18, 32, 58, 104, 188}[[n]]; a[n_] := a[n] = 5*a[n-2] - 6*a[n-4] + a[n-6]; Array[a, 31] (* Jean-François Alcover, Oct 07 2017 *) 2*LinearRecurrence[{1,2,-1}, {5,9,16}, 40] (* G. C. Greubel, Feb 02 2019 *)
-
PARI
my(x='x+O('x^40)); Vec(2*x*(5+4*x-3*x^2)/(1-x-2*x^2+x^3)) \\ G. C. Greubel, Feb 02 2019
-
Sage
a=(2*x*(5+4*x-3*x^2)/(1-x-2*x^2+x^3)).series(x, 40).coefficients(x, sparse=False); a[1:] # G. C. Greubel, Feb 02 2019
Formula
Equals 2 * A090990.
a(k+6) = 5*a(k+4) - 6*a(k+2) + a(k).
From Colin Barker, May 03 2012: (Start)
a(n) = a(n-1) + 2*a(n-2) - a(n-3).
G.f.: 2*x*(5+4*x-3*x^2)/(1-x-2*x^2+x^3). (End)
Extensions
More terms from Joseph Myers, Dec 23 2008
Comments