A090989
Number of meaningful differential operations of the n-th order on the space R^4.
Original entry on oeis.org
4, 6, 8, 12, 16, 24, 32, 48, 64, 96, 128, 192, 256, 384, 512, 768, 1024, 1536, 2048, 3072, 4096, 6144, 8192, 12288, 16384, 24576, 32768, 49152, 65536, 98304, 131072, 196608, 262144, 393216, 524288, 786432, 1048576, 1572864, 2097152, 3145728, 4194304, 6291456, 8388608
Offset: 1
- G. C. Greubel, Table of n, a(n) for n = 1..1000
- Branko Malesevic, Some combinatorial aspects of differential operation composition on the space R^n , Univ. Beograd, Publ. Elektrotehn. Fak., Ser. Mat. 9 (1998), 29-33.
- Branko Malesevic, Some combinatorial aspects of differential operation compositions on space R^n, arXiv:0704.0750 [math.DG], 2007.
- Index entries for linear recurrences with constant coefficients, signature (0,2).
-
a:=[4,6];; for n in [3..40] do a[n]:=2*a[n-2]; od; a; # G. C. Greubel, Feb 02 2019
-
m:=40; R:=PowerSeriesRing(Integers(), m); Coefficients(R!( 2*x*(2+3*x)/(1-2*x^2) )); // G. C. Greubel, Feb 02 2019
-
NUM := proc(k :: integer) local i,j,n,Fun,Identity,v,A; n := 4; # <- DIMENSION Fun := (i,j)->piecewise(((j=i+1) or (i+j=n+1)),1,0); Identity := (i,j)->piecewise(i=j,1,0); v := matrix(1,n,1); A := piecewise(k>1,(matrix(n,n,Fun))^(k-1),k=1,matrix(n,n,Identity)); return(evalm(v&*A&*transpose(v))[1,1]); end:
-
LinearRecurrence[{0,2}, {4,6}, 40] (* G. C. Greubel, Feb 02 2019 *)
-
my(x='x+O('x^40)); Vec(2*x*(2+3*x)/(1-2*x^2)) \\ G. C. Greubel, Feb 02 2019
-
(2*(2+3*x)/(1-2*x^2)).series(x, 40).coefficients(x, sparse=False) # G. C. Greubel, Feb 02 2019
A220062
Number A(n,k) of n length words over k-ary alphabet, where neighboring letters are neighbors in the alphabet; square array A(n,k), n>=0, k>=0, read by antidiagonals.
Original entry on oeis.org
1, 1, 0, 1, 1, 0, 1, 2, 0, 0, 1, 3, 2, 0, 0, 1, 4, 4, 2, 0, 0, 1, 5, 6, 6, 2, 0, 0, 1, 6, 8, 10, 8, 2, 0, 0, 1, 7, 10, 14, 16, 12, 2, 0, 0, 1, 8, 12, 18, 24, 26, 16, 2, 0, 0, 1, 9, 14, 22, 32, 42, 42, 24, 2, 0, 0, 1, 10, 16, 26, 40, 58, 72, 68, 32, 2, 0, 0
Offset: 0
A(5,3) = 12: there are 12 words of length 5 over 3-ary alphabet {a,b,c}, where neighboring letters are neighbors in the alphabet: ababa, ababc, abcba, abcbc, babab, babcb, bcbab, bcbcb, cbaba, cbabc, cbcba, cbcbc.
Square array A(n,k) begins:
1, 1, 1, 1, 1, 1, 1, 1, ...
0, 1, 2, 3, 4, 5, 6, 7, ...
0, 0, 2, 4, 6, 8, 10, 12, ...
0, 0, 2, 6, 10, 14, 18, 22, ...
0, 0, 2, 8, 16, 24, 32, 40, ...
0, 0, 2, 12, 26, 42, 58, 74, ...
0, 0, 2, 16, 42, 72, 104, 136, ...
0, 0, 2, 24, 68, 126, 188, 252, ...
Columns k=0, 2-10 give:
A000007,
A040000,
A029744(n+2) for n>0,
A006355(n+3) for n>0,
A090993(n+1) for n>0,
A090995(n-1) for n>2,
A129639,
A153340,
A153362,
A153360.
-
b:= proc(n, i, k) option remember; `if`(n=0, 1,
`if`(i=0, add(b(n-1, j, k), j=1..k),
`if`(i>1, b(n-1, i-1, k), 0)+
`if`(i b(n, 0, k):
seq(seq(A(n, d-n), n=0..d), d=0..14);
-
b[n_, i_, k_] := b[n, i, k] = If[n == 0, 1, If[i == 0, Sum[b[n-1, j, k], {j, 1, k}], If[i>1, b[n-1, i-1, k], 0] + If[iJean-François Alcover, Jan 19 2015, after Alois P. Heinz *)
-
TransferGf(m,u,t,v,z)=vector(m,i,u(i))*matsolve(matid(m)-z*matrix(m,m,i,j,t(i,j)),vectorv(m,i,v(i)));
ColGf(m,z)=1+z*TransferGf(m, i->1, (i,j)->abs(i-j)==1, j->1, z);
a(n,k)=Vec(ColGf(k,x) + O(x^(n+1)))[n+1];
for(n=0, 7, for(k=0, 7, print1( a(n,k), ", ") ); print(); );
\\ Andrew Howroyd, Apr 17 2017
A090990
Number of meaningful differential operations of the n-th order on the space R^5.
Original entry on oeis.org
5, 9, 16, 29, 52, 94, 169, 305, 549, 990, 1783, 3214, 5790, 10435, 18801, 33881, 61048, 110009, 198224, 357194, 643633, 1159797, 2089869, 3765830, 6785771, 12227562, 22033274, 39702627, 71541613, 128913593, 232294192, 418579765
Offset: 1
- G. C. Greubel, Table of n, a(n) for n = 1..1000
- Branko Malesevic, Some combinatorial aspects of differential operation composition on the space R^n, Univ. Beograd, Publ. Elektrotehn. Fak., Ser. Mat. 9 (1998), 29-33.
- Branko Malesevic, Some combinatorial aspects of differential operation composition on the space R^n, arXiv:0704.0750 [math.DG], 2007.
- Branko Malesevic and I. Jovovic, The Compositions of the Differential Operations and Gateaux Directional Derivative, arXiv:0706.0249 [math.CO], 2007.
- Index entries for linear recurrences with constant coefficients, signature (1,2,-1).
-
a:=[5,9,16];; for n in [4..30] do a[n]:=a[n-1]+2*a[n-2]-a[n-3]; od; a; # G. C. Greubel, Feb 02 2019
-
m:=40; R:=PowerSeriesRing(Integers(), m); Coefficients(R!( x*(5+4*x-3*x^2)/(1-x-2*x^2+x^3) )); // G. C. Greubel, Feb 02 2019
-
NUM := proc(k :: integer) local i,j,n,Fun,Identity,v,A; n := 5; # <- DIMENSION Fun := (i,j)->piecewise(((j=i+1) or (i+j=n+1)),1,0); Identity := (i,j)->piecewise(i=j,1,0); v := matrix(1,n,1); A := piecewise(k>1,(matrix(n,n,Fun))^(k-1),k=1,matrix(n,n,Identity)); return(evalm(v&*A&*transpose(v))[1,1]); end:
-
LinearRecurrence[{1, 2, -1}, {5, 9, 16}, 32] (* Jean-François Alcover, Nov 22 2017 *)
-
my(x='x+O('x^40)); Vec(x*(5+4*x-3*x^2)/(1-x-2*x^2+x^3)) \\ G. C. Greubel, Feb 02 2019
-
a=(x*(5+4*x-3*x^2)/(1-x-2*x^2+x^3)).series(x, 40).coefficients(x, sparse=False); a[1:] # G. C. Greubel, Feb 02 2019
More terms from
Branko Malesevic and Ivana Jovovic (ivana121(AT)EUnet.yu), Jun 21 2007
A129639
Number of meaningful differential operations of the k-th order on the space R^12.
Original entry on oeis.org
12, 22, 40, 74, 136, 252, 464, 860, 1584, 2936, 5408, 10024, 18464, 34224, 63040, 116848, 215232, 398944, 734848, 1362080, 2508928, 4650432, 8566016, 15877568, 29246208, 54209408, 99852800, 185082496, 340918784, 631911168, 1163969536
Offset: 12
-
NUM := proc(k :: integer) local i,j,n,Fun,Identity,v,A; n:=12; # <- DIMENSION Fun:=(i,j)->piecewise(((j=i+1) or (i+j=n+1)),1,0); Identity:=(i,j)->piecewise(i=j,1,0); v:=matrix(1,n,1); A:=piecewise(k>1,(matrix(n,n,Fun))^(k-1),k=1,matrix(n,n,Identity)); return(evalm(v&*A&*transpose(v))[1,1]); end:
-
f[k_] := f[k] = If[k <= 17, {12, 22, 40, 74, 136, 252}[[k-11]], 6 f[k-2] - 10 f[k-4] + 4 f[k-6]];
f /@ Range[12, 42] (* Jean-François Alcover, Apr 21 2020 *)
A116183
Array T(k,n) = number of meaningful differential operations of the n-th order on the space R^(3+k), for k=>0, n>0, read by antidiagonals.
Original entry on oeis.org
3, 4, 5, 5, 6, 8, 6, 9, 8, 13, 7, 10, 16, 12, 21, 8, 13, 16, 29, 16, 34, 9, 14, 24, 26, 52, 24, 55, 10, 17, 24, 45, 42, 94, 32, 89, 11, 18, 32, 42, 84, 68, 169
Offset: 1
Table begins:
k=0.|.3..5..8.13..21..34..55..89..144..233..377..610..987.1597...
k=1.|.4..6..8.12..16..24..32..48...64...96..128..192..256..384...
k=2.|.5..9.16.29..52..94.169.305..549..990.1783.3214.5790...
k=3.|.6.10.16.26..42..68.110.178..288..466..754.1220.1974...
k=4.|.7.13.24.45..84.158.296.557.1045.1966.3691.6942.13038...
k=5.|.8.14.24.42..72.126.216.378..648.1134.1944.3402..5832...
k=6.|.9.17.32.61.116.222.424.813.1556.2986.5721.10982...
k=7.|10.18.32.58.104.188.338.610.1098.1980.3566.6428...
A208668
Number of 2n-bead necklaces labeled with numbers 1..5 allowing reversal, with neighbors differing by exactly 1.
Original entry on oeis.org
4, 7, 12, 23, 44, 97, 212, 512, 1260, 3251, 8540, 23035, 62780, 173453, 482692, 1353077, 3811364, 10785235, 30625196, 87239999, 249174236, 713416601, 2046945140, 5884580074, 16946835092, 48883925867, 141217957620, 408519816611, 1183291934300, 3431535849813
Offset: 1
All solutions for n=3:
..3....3....1....1....1....2....2....3....1....2....2....4
..4....4....2....2....2....3....3....4....2....3....3....5
..5....3....1....1....3....2....4....3....3....2....4....4
..4....4....2....2....2....3....5....4....4....3....3....5
..5....5....3....1....3....2....4....3....3....4....4....4
..4....4....2....2....2....3....3....4....2....3....3....5
Showing 1-6 of 6 results.
Comments