cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-8 of 8 results.

A145751 Duplicate of A063759.

Original entry on oeis.org

1, 3, 4, 6, 8, 12, 16, 24, 32, 48, 64, 96, 128, 192, 256, 384, 512, 768, 1024, 1536, 2048, 3072, 4096, 6144, 8192, 12288, 16384, 24576, 32768, 49152, 65536, 98304, 131072, 196608, 262144, 393216, 524288, 786432, 1048576, 1572864, 2097152, 3145728, 4194304, 6291456, 8388608
Offset: 0

Views

Author

W. Edwin Clark, Oct 17 2008

Keywords

A029744 Numbers of the form 2^n or 3*2^n.

Original entry on oeis.org

1, 2, 3, 4, 6, 8, 12, 16, 24, 32, 48, 64, 96, 128, 192, 256, 384, 512, 768, 1024, 1536, 2048, 3072, 4096, 6144, 8192, 12288, 16384, 24576, 32768, 49152, 65536, 98304, 131072, 196608, 262144, 393216, 524288, 786432, 1048576, 1572864, 2097152, 3145728, 4194304
Offset: 1

Views

Author

Keywords

Comments

This entry is a list, and so has offset 1. WARNING: However, in this entry several comments, formulas and programs seem to refer to the original version of this sequence which had offset 0. - M. F. Hasler, Oct 06 2014
Number of necklaces with n-1 beads and two colors that are the same when turned over and hence have reflection symmetry. [edited by Herbert Kociemba, Nov 24 2016]
The subset {a(1),...,a(2k)} contains all proper divisors of 3*2^k. - Ralf Stephan, Jun 02 2003
Let k = any nonnegative integer and j = 0 or 1. Then n+1 = 2k + 3j and a(n) = 2^k*3^j. - Andras Erszegi (erszegi.andras(AT)chello.hu), Jul 30 2005
Smallest number having no fewer prime factors than any predecessor, a(0)=1; A110654(n) = A001222(a(n)); complement of A116451. - Reinhard Zumkeller, Feb 16 2006
A093873(a(n)) = 1. - Reinhard Zumkeller, Oct 13 2006
a(n) = a(n-1) + a(n-2) - gcd(a(n-1), a(n-2)), n >= 3, a(1)=2, a(2)=3. - Ctibor O. Zizka, Jun 06 2009
Where records occur in A048985: A193652(n) = A048985(a(n)) and A193652(n) < A048985(m) for m < a(n). - Reinhard Zumkeller, Aug 08 2011
A002348(a(n)) = A000079(n-3) for n > 2. - Reinhard Zumkeller, Mar 18 2012
Without initial 1, third row in array A228405. - Richard R. Forberg, Sep 06 2013
Also positions of records in A048673. A246360 gives the record values. - Antti Karttunen, Sep 23 2014
Known in numerical mathematics as "Bulirsch sequence", used in various extrapolation methods for step size control. - Peter Luschny, Oct 30 2019
For n > 1, squares of the terms can be expressed as the sum of two powers of two: 2^x + 2^y. - Karl-Heinz Hofmann, Sep 08 2022

Crossrefs

Cf. A056493, A038754, A063759. Union of A000079 and A007283.
First differences are in A016116(n-1).
Row sums of the triangle in sequence A119963. - John P. McSorley, Aug 31 2010
The following sequences are all essentially the same, in the sense that they are simple transformations of each other, with A029744 = {s(n), n>=1}, the numbers 2^k and 3*2^k, as the parent. There may be minor differences from (s(n)) at the start, and a shift of indices. A029744 (s(n)); A052955 (s(n)-1), A027383 (s(n)-2), A354788 (s(n)-3), A060482 (s(n)-3); A136252 (s(n)-3); A347789 (s(n)-4), A209721 (s(n)+1), A209722 (s(n)+2), A343177 (s(n)+3), A209723 (s(n)+4); A354785 (3*s(n)), A061776 (3*s(n)-6); A354789 (3*s(n)-7). The first differences of A029744 are 1,1,1,2,2,4,4,8,8,... which essentially matches eight sequences: A016116, A060546, A117575, A131572, A152166, A158780, A163403, A320770. The bisections of A029744 are A000079 and A007283. - N. J. A. Sloane, Jul 14 2022

Programs

  • Haskell
    a029744 n = a029744_list !! (n-1)
    a029744_list = 1 : iterate
       (\x -> if x `mod` 3 == 0 then 4 * x `div` 3 else 3 * x `div` 2) 2
    -- Reinhard Zumkeller, Mar 18 2012
    
  • Maple
    1,seq(op([2^i,3*2^(i-1)]),i=1..100); # Robert Israel, Sep 23 2014
  • Mathematica
    CoefficientList[Series[(-x^2 - 2*x - 1)/(2*x^2 - 1), {x, 0, 200}], x] (* Vladimir Joseph Stephan Orlovsky, Jun 10 2011 *)
    Function[w, DeleteCases[Union@ Flatten@ w, k_ /; k > Max@ First@ w]]@ TensorProduct[{1, 3}, 2^Range[0, 22]] (* Michael De Vlieger, Nov 24 2016 *)
    LinearRecurrence[{0,2},{1,2,3},50] (* Harvey P. Dale, Jul 04 2017 *)
  • PARI
    a(n)=if(n%2,3/2,2)<<((n-1)\2)\1
    
  • Python
    def A029744(n):
        if n == 1: return 1
        elif n % 2 == 0: return 2**(n//2)
        else: return 3 * 2**((n-3)//2) # Karl-Heinz Hofmann, Sep 08 2022
  • Scheme
    (define (A029744 n) (cond ((<= n 1) n) ((even? n) (expt 2 (/ n 2))) (else (* 3 (expt 2 (/ (- n 3) 2)))))) ;; Antti Karttunen, Sep 23 2014
    

Formula

a(n) = 2*A000029(n) - A000031(n).
For n > 2, a(n) = 2*a(n - 2); for n > 3, a(n) = a(n - 1)*a(n - 2)/a(n - 3). G.f.: (1 + x)^2/(1 - 2*x^2). - Henry Bottomley, Jul 15 2001, corrected May 04 2007
a(0)=1, a(1)=1 and a(n) = a(n-2) * ( floor(a(n-1)/a(n-2)) + 1 ). - Benoit Cloitre, Aug 13 2002
(3/4 + sqrt(1/2))*sqrt(2)^n + (3/4 - sqrt(1/2))*(-sqrt(2))^n. a(0)=1, a(2n) = a(n-1)*a(n), a(2n+1) = a(n) + 2^floor((n-1)/2). - Ralf Stephan, Apr 16 2003 [Seems to refer to the original version with offset=0. - M. F. Hasler, Oct 06 2014]
Binomial transform is A048739. - Paul Barry, Apr 23 2004
E.g.f.: (cosh(x/sqrt(2)) + sqrt(2)sinh(x/sqrt(2)))^2.
a(1) = 1; a(n+1) = a(n) + A000010(a(n)). - Stefan Steinerberger, Dec 20 2007
u(2)=1, v(2)=1, u(n)=2*v(n-1), v(n)=u(n-1), a(n)=u(n)+v(n). - Jaume Oliver Lafont, May 21 2008
For n => 3, a(n) = sqrt(2*a(n-1)^2 + (-2)^(n-3)). - Richard R. Forberg, Aug 20 2013
a(n) = A064216(A246360(n)). - Antti Karttunen, Sep 23 2014
a(n) = sqrt((17 - (-1)^n)*2^(n-4)) for n >= 2. - Anton Zakharov, Jul 24 2016
Sum_{n>=1} 1/a(n) = 8/3. - Amiram Eldar, Nov 12 2020
a(n) = 2^(n/2) if n is even. a(n) = 3 * 2^((n-3)/2) if n is odd and for n>1. - Karl-Heinz Hofmann, Sep 08 2022

Extensions

Corrected and extended by Joe Keane (jgk(AT)jgk.org), Feb 20 2000

A151821 Powers of 2, omitting 2 itself.

Original entry on oeis.org

1, 4, 8, 16, 32, 64, 128, 256, 512, 1024, 2048, 4096, 8192, 16384, 32768, 65536, 131072, 262144, 524288, 1048576, 2097152, 4194304, 8388608, 16777216, 33554432, 67108864, 134217728, 268435456, 536870912, 1073741824, 2147483648, 4294967296, 8589934592
Offset: 1

Views

Author

N. J. A. Sloane, Jul 08 2009

Keywords

Comments

Different from A046055.
An elephant sequence, see A175655. For the central square just one A[5] vector, with decimal value 170, leads to this sequence. For the corner squares this vector leads to the companion sequence A095121. - Johannes W. Meijer, Aug 15 2010
This is a subsequence of A055744, numbers n such that n and phi(n) have same prime factors. - Michel Marcus, Mar 20 2015
INVERTi transform of A007483: (1, 5, 17, 61, 217, 773, ...). - Gary W. Adamson, Aug 06 2016
Nonprimes that are also powers of 2. Intersection of A000079 and A018252. - Omar E. Pol, Jan 27 2017
Also the chromatic number of the n-Keller graph. - Eric W. Weisstein, Nov 17 2017

Crossrefs

Partial sums are given by 2*A000225(n)-1, which is not the same as A000918.

Programs

Formula

G.f.: x*(1+2*x)/(1-2*x). - Philippe Deléham, Sep 17 2009
a(1) = 1 and a(n) = 3 + Sum_{k=1..n-1} a(k) for n>=2. - Joerg Arndt, Aug 15 2012
E.g.f.: exp(2*x) - x - 1. - Stefano Spezia, Jan 31 2023

A090989 Number of meaningful differential operations of the n-th order on the space R^4.

Original entry on oeis.org

4, 6, 8, 12, 16, 24, 32, 48, 64, 96, 128, 192, 256, 384, 512, 768, 1024, 1536, 2048, 3072, 4096, 6144, 8192, 12288, 16384, 24576, 32768, 49152, 65536, 98304, 131072, 196608, 262144, 393216, 524288, 786432, 1048576, 1572864, 2097152, 3145728, 4194304, 6291456, 8388608
Offset: 1

Views

Author

Branko Malesevic, Feb 29 2004

Keywords

Crossrefs

Programs

  • GAP
    a:=[4,6];; for n in [3..40] do a[n]:=2*a[n-2]; od; a; # G. C. Greubel, Feb 02 2019
  • Magma
    m:=40; R:=PowerSeriesRing(Integers(), m); Coefficients(R!(  2*x*(2+3*x)/(1-2*x^2) )); // G. C. Greubel, Feb 02 2019
    
  • Maple
    NUM := proc(k :: integer) local i,j,n,Fun,Identity,v,A; n := 4; # <- DIMENSION Fun := (i,j)->piecewise(((j=i+1) or (i+j=n+1)),1,0); Identity := (i,j)->piecewise(i=j,1,0); v := matrix(1,n,1); A := piecewise(k>1,(matrix(n,n,Fun))^(k-1),k=1,matrix(n,n,Identity)); return(evalm(v&*A&*transpose(v))[1,1]); end:
  • Mathematica
    LinearRecurrence[{0,2}, {4,6}, 40] (* G. C. Greubel, Feb 02 2019 *)
  • PARI
    my(x='x+O('x^40)); Vec(2*x*(2+3*x)/(1-2*x^2)) \\ G. C. Greubel, Feb 02 2019
    
  • Sage
    (2*(2+3*x)/(1-2*x^2)).series(x, 40).coefficients(x, sparse=False) # G. C. Greubel, Feb 02 2019
    

Formula

a(k+2) = 2*a(k).
a(n) = b(n+3) where b(n) = gcdConv(c(n)) = Sum_{k=0..n} gcd(c(k),c(n-k)) and c(k)=A000079(k) for k>0 and c(0)=1. - Tilman Neumann, Jan 11 2009 [Updated by Sean A. Irvine, Jan 15 2025]
G.f.: 2*x*(2+3*x)/(1-2*x^2). - Colin Barker, May 03 2012
a(n) = 2*A164090(n). - R. J. Mathar, Jan 25 2023
a(n) = (sqrt(2))^n*(3/2 + sqrt(2) + (-1)^n*(3/2 - sqrt(2))). - Taras Goy, Jan 04 2025

Extensions

More terms from Tilman Neumann, Feb 06 2009

A164090 a(n) = 2*a(n-2) for n > 2; a(1) = 2, a(2) = 3.

Original entry on oeis.org

2, 3, 4, 6, 8, 12, 16, 24, 32, 48, 64, 96, 128, 192, 256, 384, 512, 768, 1024, 1536, 2048, 3072, 4096, 6144, 8192, 12288, 16384, 24576, 32768, 49152, 65536, 98304, 131072, 196608, 262144, 393216, 524288, 786432, 1048576, 1572864, 2097152, 3145728
Offset: 1

Views

Author

Klaus Brockhaus, Aug 09 2009

Keywords

Comments

Interleaving of A000079 without initial 1 and A007283.
Agrees from a(2) onward with A145751 for all terms listed there (up to 65536). Apparently equal to 2, 3 followed by A090989. Equals 2 followed by A163978.
Binomial transform is A000129 without first two terms, second binomial transform is A020727, third binomial transform is A164033, fourth binomial transform is A164034, fifth binomial transform is A164035.
Number of achiral necklaces or bracelets with n beads using up to 2 colors. For n=5, the eight achiral necklaces or bracelets are AAAAA, AAAAB, AAABB, AABAB, AABBB, ABABB, ABBBB, and BBBBB. - Robert A. Russell, Sep 22 2018

Crossrefs

Programs

  • Magma
    [ n le 2 select n+1 else 2*Self(n-2): n in [1..42] ];
    
  • Mathematica
    a[n_] := If[EvenQ[n], 3*2^(n/2 - 1), 2^((n + 1)/2)]; Array[a, 42] (* Jean-François Alcover, Oct 12 2017 *)
    RecurrenceTable[{a[1]==2,a[2]==3,a[n]==2a[n-2]},a,{n,50}] (* or *) LinearRecurrence[{0,2},{2,3},50] (* Harvey P. Dale, Mar 01 2018 *)
  • PARI
    a(n) = if(n%2,2,3) * 2^((n-1)\2); \\ Andrew Howroyd, Oct 07 2017

Formula

a(n) = A029744(n+1).
a(n) = A052955(n-1) + 1.
a(n) = A027383(n-2) + 2 for n > 1.
a(n) = A060482(n-1) + 3 for n > 3.
a(n) = A070875(n) - A070875(n-1).
a(n) = (7 - (-1)^n)*2^((1/4)*(2*n - 1 + (-1)^n))/4.
G.f.: x*(2+3*x)/(1-2*x^2).
a(n) = A063759(n-1), n>1. - R. J. Mathar, Aug 17 2009
Sum_{n>=1} 1/a(n) = 5/3. - Amiram Eldar, Mar 28 2022

A135094 a(n) = 2*a(n-1) + 2*a(n-2) - 4*a(n-3) with n>2, a(0)=0, a(1)=1, a(2)=3.

Original entry on oeis.org

0, 1, 3, 8, 18, 40, 84, 176, 360, 736, 1488, 3008, 6048, 12160, 24384, 48896, 97920, 196096, 392448, 785408, 1571328, 3143680, 6288384, 12578816, 25159680, 50323456, 100651008, 201310208, 402628608, 805273600, 1610563584, 3221159936
Offset: 0

Views

Author

Paul Curtz, Feb 12 2008

Keywords

Crossrefs

Programs

  • Magma
    I:=[0,1,3]; [n le 3 select I[n] else 2*Self(n-1)+2*Self(n-2)-4*Self(n-3): n in [1..40]]; // Vincenzo Librandi, Sep 23 2016
  • Mathematica
    LinearRecurrence[{2, 2, -4}, {0, 1, 3}, 50] (* G. C. Greubel, Sep 22 2016 *)

Formula

From R. J. Mathar, Feb 15 2008: (Start)
O.g.f.: -3/(2*(2*x-1)) + (4*x+3)/(2*(2*x^2-1)).
a(n) = 3*2^(n-1) - A063759(n+1)/2. (End)
From Colin Barker, Sep 23 2016: (Start)
a(n) = 3*2^(n-1) - 3*2^(n/2-1) for n even.
a(n) = 3*2^(n-1) - 2^((n+1)/2) for n odd. (End)

Extensions

More terms from R. J. Mathar, Feb 15 2008

A163978 a(n) = 2*a(n-2) for n > 2; a(1) = 3, a(2) = 4.

Original entry on oeis.org

3, 4, 6, 8, 12, 16, 24, 32, 48, 64, 96, 128, 192, 256, 384, 512, 768, 1024, 1536, 2048, 3072, 4096, 6144, 8192, 12288, 16384, 24576, 32768, 49152, 65536, 98304, 131072, 196608, 262144, 393216, 524288, 786432, 1048576, 1572864, 2097152, 3145728
Offset: 1

Views

Author

Klaus Brockhaus, Aug 07 2009

Keywords

Comments

Interleaving of A007283 and A000079 without initial terms 1 and 2.
Equals A029744 without first two terms. Agrees with A145751 for all terms listed there (up to 65536).
Binomial transform is A078057 without initial 1, second binomial transform is A048580, third binomial transform is A163606, fourth binomial transform is A163604, fifth binomial transform is A163605.
a(n) is the number of vertices of the (n-1)-iterated line digraph L^{n-1}(G) of the digraph G(=L^0(G)) with vertices u,v,w and arcs u->v, v->u, v->w, w->v. - Miquel A. Fiol, Jun 08 2024

Crossrefs

Programs

  • Magma
    [ n le 2 select n+2 else 2*Self(n-2): n in [1..41] ];
    
  • Mathematica
    LinearRecurrence[{0,2}, {3,4}, 52] (* or *) Table[(1/2)*(5-(-1)^n )*2^((2*n-1+(-1)^n)/4), {n,50}] (* G. C. Greubel, Aug 24 2017 *)
  • PARI
    my(x='x+O('x^50)); Vec(x*(3+4*x)/(1-2*x^2)) \\ G. C. Greubel, Aug 24 2017
    
  • SageMath
    [(2+(n%2))*2^((n-(n%2))//2) for n in range(1,41)] # G. C. Greubel, Jun 13 2024

Formula

a(n) = A027383(n-1) + 2.
a(n) = A052955(n) + 1 for n >= 1.
a(n) = (1/2)*(5 - (-1)^n)*2^((2*n - 1 + (-1)^n)/4).
G.f.: x*(3+4*x)/(1-2*x^2).
a(n) = A090989(n-1).
E.g.f.: (1/2)*(4*cosh(sqrt(2)*x) + 3*sqrt(2)*sinh(sqrt(2)*x) - 4). - G. C. Greubel, Aug 24 2017
a(n) = A063759(n), n >= 1. - R. J. Mathar, Jan 25 2023

A265207 Draw a square and follow these steps: Take a square and place at its edges isosceles right triangles with the edge as hypotenuse. Draw a square at every new edge of the triangles. Repeat for all the new squares of the same size. New figures are only placed on empty space. The structure is symmetric about the first square. The sequence gives the numbers of squares of equal size in successive rings around the center.

Original entry on oeis.org

1, 8, 20, 36, 60, 92, 140, 204, 300, 428, 620, 876, 1260, 1772, 2540, 3564, 5100, 7148, 10220, 14316, 20460, 28652, 40940, 57324, 81900, 114668, 163820, 229356, 327660, 458732, 655340, 917484, 1310700, 1834988, 2621420, 3669996, 5242860, 7340012, 10485740, 14680044, 20971500, 29360108, 41943020, 58720236
Offset: 1

Views

Author

Marian Kraus, Dec 04 2015

Keywords

Examples

			By recursion:
a(3)=2*a(1)+20=2*8+20=36
a(4)=2*a(2)+20=2*20+20=60
By function:
a(3)=4*sum_{k=1}^{[(3+1)/2]}(2^k)+6*sum_{k=1}^{[3/2]}(2^k)
=4*sum_{k=1}^{[2]}(2^k)+6*sum_{k=1}^{[1.5]}(2^k)
=4*sum_{k=1}^{2}(2^k)+6*sum_{k=1}^{1}(2^k)
=4*(2^1+2^2)+6*(2^1)
=4*(2+4)+6*(2)=24+12=36
a(4)=4*sum_{k=1}^{[(4+1)/2]}(2^k)+6*sum_{k=1}^{[4/2]}(2^k)
=4*sum_{k=1}^{[2.5]}(2^k)+6*sum_{k=1}^{[2]}(2^k)
=4*sum_{k=1}^{2}(2^k)+6*sum_{k=1}^{2}(2^k)
=4*(2^1+2^2)+6*(2^1+2^2)
=4*(2+4)+6*(2+4)=24+36=60
		

Crossrefs

For the differences (a(n)-a(n-1))/4, n>2, see A163978.

Programs

  • R
    rm(a)
    a <- vector() powerof2 <- vector()
    x <- 300
    n <- x/2
    for (i in 1:x){
       powerof2[i] <- 2^(i-1)}
    powerof2 for (i in 1:n){
       a[2*i]   <- 8*(sum(powerof2[1:i]))+12*(sum(powerof2[1:i]))}
    for (i in 1:(n+1)){
       a[2*i+1] <- 8*(sum(powerof2[1:(i+1)]))+12*(sum(powerof2[1:i]))}
    a[1]<-8
    a

Formula

Conjectured recurrence:
a(0)=1,
a(1)=8,
a(2)=20, and thereafter
a(n)=2*a(n-2)+20.
Conjectured formula: ("[]" is the floor function)
a(n)=4*sum_{k=1}^{[(n+1)/2]}(2^k)+6*sum_{k=1}^{[n/2]}(2^k).
Conjectures from Colin Barker, Dec 07 2015: (Start)
a(n) = (-20+2^(1/2*(-1+n))*(10-10*(-1)^n+7*sqrt(2)+7*(-1)^n*sqrt(2))) for n>1.
a(n) = 5*2^(n/2+1/2)-5*(-1)^n*2^(n/2+1/2)+7*2^(n/2)+7*(-1)^n*2^(n/2)-20 for n>1.
a(n) = a(n-1)+2*a(n-2)-2*a(n-3) for n>4.
G.f.: x*(1+7*x+10*x^2+2*x^3) / ((1-x)*(1-2*x^2)).
(End)
Showing 1-8 of 8 results.