Original entry on oeis.org
1, 3, 4, 6, 8, 12, 16, 24, 32, 48, 64, 96, 128, 192, 256, 384, 512, 768, 1024, 1536, 2048, 3072, 4096, 6144, 8192, 12288, 16384, 24576, 32768, 49152, 65536, 98304, 131072, 196608, 262144, 393216, 524288, 786432, 1048576, 1572864, 2097152, 3145728, 4194304, 6291456, 8388608
Offset: 0
A029744
Numbers of the form 2^n or 3*2^n.
Original entry on oeis.org
1, 2, 3, 4, 6, 8, 12, 16, 24, 32, 48, 64, 96, 128, 192, 256, 384, 512, 768, 1024, 1536, 2048, 3072, 4096, 6144, 8192, 12288, 16384, 24576, 32768, 49152, 65536, 98304, 131072, 196608, 262144, 393216, 524288, 786432, 1048576, 1572864, 2097152, 3145728, 4194304
Offset: 1
- Vincenzo Librandi, Table of n, a(n) for n = 1..2000
- Spencer Daugherty, Pamela E. Harris, Ian Klein, and Matt McClinton, Metered Parking Functions, arXiv:2406.12941 [math.CO], 2024. See pp. 11, 22.
- Michael De Vlieger, Thomas Scheuerle, Rémy Sigrist, N. J. A. Sloane, and Walter Trump, The Binary Two-Up Sequence, arXiv:2209.04108 [math.CO], Sep 11 2022.
- David Eppstein, Making Change in 2048, arXiv:1804.07396 [cs.DM], 2018.
- Guo-Niu Han, Enumeration of Standard Puzzles. [Cached copy]
- John P. McSorley and Alan H. Schoen, Rhombic tilings of (n,k)-ovals, (n, k, lambda)-cyclic difference sets, and related topics, Discrete Math., 313 (2013), 129-154. - From _N. J. A. Sloane_, Nov 26 2012
- Index entries for linear recurrences with constant coefficients, signature (0,2).
- Index entries for sequences related to necklaces
First differences are in
A016116(n-1).
The following sequences are all essentially the same, in the sense that they are simple transformations of each other, with
A029744 = {s(n), n>=1}, the numbers 2^k and 3*2^k, as the parent. There may be minor differences from (s(n)) at the start, and a shift of indices.
A029744 (s(n));
A052955 (s(n)-1),
A027383 (s(n)-2),
A354788 (s(n)-3),
A060482 (s(n)-3);
A136252 (s(n)-3);
A347789 (s(n)-4),
A209721 (s(n)+1),
A209722 (s(n)+2),
A343177 (s(n)+3),
A209723 (s(n)+4);
A354785 (3*s(n)),
A061776 (3*s(n)-6);
A354789 (3*s(n)-7). The first differences of
A029744 are 1,1,1,2,2,4,4,8,8,... which essentially matches eight sequences:
A016116,
A060546,
A117575,
A131572,
A152166,
A158780,
A163403,
A320770. The bisections of
A029744 are
A000079 and
A007283. -
N. J. A. Sloane, Jul 14 2022
-
a029744 n = a029744_list !! (n-1)
a029744_list = 1 : iterate
(\x -> if x `mod` 3 == 0 then 4 * x `div` 3 else 3 * x `div` 2) 2
-- Reinhard Zumkeller, Mar 18 2012
-
1,seq(op([2^i,3*2^(i-1)]),i=1..100); # Robert Israel, Sep 23 2014
-
CoefficientList[Series[(-x^2 - 2*x - 1)/(2*x^2 - 1), {x, 0, 200}], x] (* Vladimir Joseph Stephan Orlovsky, Jun 10 2011 *)
Function[w, DeleteCases[Union@ Flatten@ w, k_ /; k > Max@ First@ w]]@ TensorProduct[{1, 3}, 2^Range[0, 22]] (* Michael De Vlieger, Nov 24 2016 *)
LinearRecurrence[{0,2},{1,2,3},50] (* Harvey P. Dale, Jul 04 2017 *)
-
a(n)=if(n%2,3/2,2)<<((n-1)\2)\1
-
def A029744(n):
if n == 1: return 1
elif n % 2 == 0: return 2**(n//2)
else: return 3 * 2**((n-3)//2) # Karl-Heinz Hofmann, Sep 08 2022
-
(define (A029744 n) (cond ((<= n 1) n) ((even? n) (expt 2 (/ n 2))) (else (* 3 (expt 2 (/ (- n 3) 2)))))) ;; Antti Karttunen, Sep 23 2014
Corrected and extended by Joe Keane (jgk(AT)jgk.org), Feb 20 2000
A151821
Powers of 2, omitting 2 itself.
Original entry on oeis.org
1, 4, 8, 16, 32, 64, 128, 256, 512, 1024, 2048, 4096, 8192, 16384, 32768, 65536, 131072, 262144, 524288, 1048576, 2097152, 4194304, 8388608, 16777216, 33554432, 67108864, 134217728, 268435456, 536870912, 1073741824, 2147483648, 4294967296, 8589934592
Offset: 1
Partial sums are given by 2*
A000225(n)-1, which is not the same as
A000918.
-
a151821 n = a151821_list !! (n-1)
a151821_list = x : xs where (x : _ : xs) = a000079_list
-- Reinhard Zumkeller, Dec 16 2013
-
[1] cat [2^n: n in [2..35]]; // Vincenzo Librandi, Jul 21 2013
-
CoefficientList[Series[(1 + 2 x)/(1 - 2 x), {x, 0, 40}], x] (* Vincenzo Librandi, Jul 21 2013 *)
DeleteCases[2^Range[0, 33], p_ /; PrimeQ @ p] (* Michael De Vlieger, Aug 06 2016 *)
Join[{1}, 2^Range[2, 20]] (* Eric W. Weisstein, Nov 17 2017 *)
-
a(n)=if(n>1,2^n,1) \\ Charles R Greathouse IV, Dec 08 2015
-
Vec(x*(1+2*x)/(1-2*x) + O(x^100)) \\ Altug Alkan, Dec 09 2015
-
def A151821(n): return 1<1 else 1 # Chai Wah Wu, Jun 10 2025
A090989
Number of meaningful differential operations of the n-th order on the space R^4.
Original entry on oeis.org
4, 6, 8, 12, 16, 24, 32, 48, 64, 96, 128, 192, 256, 384, 512, 768, 1024, 1536, 2048, 3072, 4096, 6144, 8192, 12288, 16384, 24576, 32768, 49152, 65536, 98304, 131072, 196608, 262144, 393216, 524288, 786432, 1048576, 1572864, 2097152, 3145728, 4194304, 6291456, 8388608
Offset: 1
- G. C. Greubel, Table of n, a(n) for n = 1..1000
- Branko Malesevic, Some combinatorial aspects of differential operation composition on the space R^n , Univ. Beograd, Publ. Elektrotehn. Fak., Ser. Mat. 9 (1998), 29-33.
- Branko Malesevic, Some combinatorial aspects of differential operation compositions on space R^n, arXiv:0704.0750 [math.DG], 2007.
- Index entries for linear recurrences with constant coefficients, signature (0,2).
-
a:=[4,6];; for n in [3..40] do a[n]:=2*a[n-2]; od; a; # G. C. Greubel, Feb 02 2019
-
m:=40; R:=PowerSeriesRing(Integers(), m); Coefficients(R!( 2*x*(2+3*x)/(1-2*x^2) )); // G. C. Greubel, Feb 02 2019
-
NUM := proc(k :: integer) local i,j,n,Fun,Identity,v,A; n := 4; # <- DIMENSION Fun := (i,j)->piecewise(((j=i+1) or (i+j=n+1)),1,0); Identity := (i,j)->piecewise(i=j,1,0); v := matrix(1,n,1); A := piecewise(k>1,(matrix(n,n,Fun))^(k-1),k=1,matrix(n,n,Identity)); return(evalm(v&*A&*transpose(v))[1,1]); end:
-
LinearRecurrence[{0,2}, {4,6}, 40] (* G. C. Greubel, Feb 02 2019 *)
-
my(x='x+O('x^40)); Vec(2*x*(2+3*x)/(1-2*x^2)) \\ G. C. Greubel, Feb 02 2019
-
(2*(2+3*x)/(1-2*x^2)).series(x, 40).coefficients(x, sparse=False) # G. C. Greubel, Feb 02 2019
A164090
a(n) = 2*a(n-2) for n > 2; a(1) = 2, a(2) = 3.
Original entry on oeis.org
2, 3, 4, 6, 8, 12, 16, 24, 32, 48, 64, 96, 128, 192, 256, 384, 512, 768, 1024, 1536, 2048, 3072, 4096, 6144, 8192, 12288, 16384, 24576, 32768, 49152, 65536, 98304, 131072, 196608, 262144, 393216, 524288, 786432, 1048576, 1572864, 2097152, 3145728
Offset: 1
Cf.
A000079 (powers of 2),
A007283 (3*2^n),
A029744,
A145751,
A090989,
A163978,
A000129,
A020727,
A164033,
A164034,
A164035,
A052955,
A027383,
A060482,
A070875.
-
[ n le 2 select n+1 else 2*Self(n-2): n in [1..42] ];
-
a[n_] := If[EvenQ[n], 3*2^(n/2 - 1), 2^((n + 1)/2)]; Array[a, 42] (* Jean-François Alcover, Oct 12 2017 *)
RecurrenceTable[{a[1]==2,a[2]==3,a[n]==2a[n-2]},a,{n,50}] (* or *) LinearRecurrence[{0,2},{2,3},50] (* Harvey P. Dale, Mar 01 2018 *)
-
a(n) = if(n%2,2,3) * 2^((n-1)\2); \\ Andrew Howroyd, Oct 07 2017
A135094
a(n) = 2*a(n-1) + 2*a(n-2) - 4*a(n-3) with n>2, a(0)=0, a(1)=1, a(2)=3.
Original entry on oeis.org
0, 1, 3, 8, 18, 40, 84, 176, 360, 736, 1488, 3008, 6048, 12160, 24384, 48896, 97920, 196096, 392448, 785408, 1571328, 3143680, 6288384, 12578816, 25159680, 50323456, 100651008, 201310208, 402628608, 805273600, 1610563584, 3221159936
Offset: 0
-
I:=[0,1,3]; [n le 3 select I[n] else 2*Self(n-1)+2*Self(n-2)-4*Self(n-3): n in [1..40]]; // Vincenzo Librandi, Sep 23 2016
-
LinearRecurrence[{2, 2, -4}, {0, 1, 3}, 50] (* G. C. Greubel, Sep 22 2016 *)
A163978
a(n) = 2*a(n-2) for n > 2; a(1) = 3, a(2) = 4.
Original entry on oeis.org
3, 4, 6, 8, 12, 16, 24, 32, 48, 64, 96, 128, 192, 256, 384, 512, 768, 1024, 1536, 2048, 3072, 4096, 6144, 8192, 12288, 16384, 24576, 32768, 49152, 65536, 98304, 131072, 196608, 262144, 393216, 524288, 786432, 1048576, 1572864, 2097152, 3145728
Offset: 1
- Vincenzo Librandi, Table of n, a(n) for n = 1..2000
- Miquel A. Fiol, J. L. A. Yebra, and I. Alegre, Line digraph iterations and the (d,k) digraph problem, IEEE Trans. Comput. C-33(5) (1984), 400-403.
- Index entries for linear recurrences with constant coefficients, signature (0,2).
Cf.
A000079 (powers of 2),
A007283 (3*2^n),
A027383,
A029744,
A048580,
A052955,
A063759,
A078057,
A090989,
A145751,
A163604,
A163605,
A163606.
-
[ n le 2 select n+2 else 2*Self(n-2): n in [1..41] ];
-
LinearRecurrence[{0,2}, {3,4}, 52] (* or *) Table[(1/2)*(5-(-1)^n )*2^((2*n-1+(-1)^n)/4), {n,50}] (* G. C. Greubel, Aug 24 2017 *)
-
my(x='x+O('x^50)); Vec(x*(3+4*x)/(1-2*x^2)) \\ G. C. Greubel, Aug 24 2017
-
[(2+(n%2))*2^((n-(n%2))//2) for n in range(1,41)] # G. C. Greubel, Jun 13 2024
A265207
Draw a square and follow these steps: Take a square and place at its edges isosceles right triangles with the edge as hypotenuse. Draw a square at every new edge of the triangles. Repeat for all the new squares of the same size. New figures are only placed on empty space. The structure is symmetric about the first square. The sequence gives the numbers of squares of equal size in successive rings around the center.
Original entry on oeis.org
1, 8, 20, 36, 60, 92, 140, 204, 300, 428, 620, 876, 1260, 1772, 2540, 3564, 5100, 7148, 10220, 14316, 20460, 28652, 40940, 57324, 81900, 114668, 163820, 229356, 327660, 458732, 655340, 917484, 1310700, 1834988, 2621420, 3669996, 5242860, 7340012, 10485740, 14680044, 20971500, 29360108, 41943020, 58720236
Offset: 1
By recursion:
a(3)=2*a(1)+20=2*8+20=36
a(4)=2*a(2)+20=2*20+20=60
By function:
a(3)=4*sum_{k=1}^{[(3+1)/2]}(2^k)+6*sum_{k=1}^{[3/2]}(2^k)
=4*sum_{k=1}^{[2]}(2^k)+6*sum_{k=1}^{[1.5]}(2^k)
=4*sum_{k=1}^{2}(2^k)+6*sum_{k=1}^{1}(2^k)
=4*(2^1+2^2)+6*(2^1)
=4*(2+4)+6*(2)=24+12=36
a(4)=4*sum_{k=1}^{[(4+1)/2]}(2^k)+6*sum_{k=1}^{[4/2]}(2^k)
=4*sum_{k=1}^{[2.5]}(2^k)+6*sum_{k=1}^{[2]}(2^k)
=4*sum_{k=1}^{2}(2^k)+6*sum_{k=1}^{2}(2^k)
=4*(2^1+2^2)+6*(2^1+2^2)
=4*(2+4)+6*(2+4)=24+36=60
For the differences (a(n)-a(n-1))/4, n>2, see
A163978.
Showing 1-8 of 8 results.
Comments