A002965
Interleave denominators (A000129) and numerators (A001333) of convergents to sqrt(2).
Original entry on oeis.org
0, 1, 1, 1, 2, 3, 5, 7, 12, 17, 29, 41, 70, 99, 169, 239, 408, 577, 985, 1393, 2378, 3363, 5741, 8119, 13860, 19601, 33461, 47321, 80782, 114243, 195025, 275807, 470832, 665857, 1136689, 1607521, 2744210, 3880899, 6625109, 9369319, 15994428, 22619537
Offset: 0
The convergents are rational numbers given by the recurrence relation p/q -> (p + 2*q)/(p + q). Starting with 1/1, the next three convergents are (1 + 2*1)/(1 + 1) = 3/2, (3 + 2*2)/(3 + 2) = 7/5, and (7 + 2*5)/(7 + 5) = 17/12. The sequence puts the denominator first, so a(2) through a(9) are 1, 1, 2, 3, 5, 7, 12, 17. - _Michael B. Porter_, Jul 18 2016
- C. Brezinski, History of Continued Fractions and Padé Approximants. Springer-Verlag, Berlin, 1991, p. 24.
- Jay Kappraff, Musical Proportions at the Basis of Systems of Architectural Proportion both Ancient and Modern, in Volume I of K. Williams and M.J. Ostwald (eds.), Architecture and Mathematics from Antiquity to the Future, DOI 10.1007/978-3-319-00143-2_27, Springer International Publishing Switzerland 2015. See Eq. 32.7.
- Serge Lang, Introduction to Diophantine Approximations, Addison-Wesley, New York, 1966.
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
- Guelena Strehler, Chess Fractal, April 2016, p. 24.
- T. D. Noe, Table of n, a(n) for n = 0..500
- Damanvir Singh Binner, Proofs of Chappelon and Alfonsín Conjectures On Square Frobenius Numbers and its Relationship to Simultaneous Pell's Equations, arXiv:2112.15474 [math.NT], 2021.
- Jonathan Chappelon and Jorge Luis Ramírez Alfonsín, The Square Frobenius Number, arXiv:2006.14219 [math.NT], 2020.
- H. S. M. Coxeter, The role of intermediate convergents in Tait's explanation for phyllotaxis, J. Algebra 20 (1972), 167-175.
- Clark Kimberling, Best lower and upper approximates to irrational numbers, Elemente der Mathematik, 52 (1997) 122-126.
- Pierre Lamothe, En marge du problème des cercles tangents
- Simon Plouffe, Approximations de séries génératrices et quelques conjectures, Dissertation, Université du Québec à Montréal, 1992; arXiv:0911.4975 [math.NT], 2009.
- Simon Plouffe, 1031 Generating Functions, Appendix to Thesis, Montreal, 1992
- Dave Rusin, Farey fractions on sci.math [Broken link]
- Dave Rusin, Farey fractions on sci.math [Cached copy]
- K. Williams, The sacred cult revisited: the pavement of the baptistery of San Giovanni, Florence, Math. Intellig., 16 (No. 2, 1994), 18-24.
- Index entries for linear recurrences with constant coefficients, signature (0,2,0,1).
-
a:=[0,1];; for n in [3..45] do a[n]:=a[n-1]+a[n-2-((n-1) mod 2)]; od; a; # Muniru A Asiru, Oct 28 2018
-
import Data.List (transpose)
a002965 n = a002965_list !! n
a002965_list = concat $ transpose [a000129_list, a001333_list]
-- Reinhard Zumkeller, Jan 01 2014
-
a=new Array(); a[0]=0; a[1]=1;
for (i=2;i<50;i+=2) {a[i]=a[i-1]+a[i-2];a[i+1]=a[i]+a[i-2];}
document.write(a); // Jon Perry, Sep 12 2012
-
I:=[0,1,1,1]; [n le 4 select I[n] else 2*Self(n-2)+Self(n-4): n in [1..50]]; // Vincenzo Librandi, Nov 30 2015
-
A002965 := proc(n) option remember; if n <= 0 then 0; elif n <= 3 then 1; else 2*A002965(n-2)+A002965(n-4); fi; end;
A002965:=-(1+2*z+z**2+z**3)/(-1+2*z**2+z**4); # conjectured by Simon Plouffe in his 1992 dissertation; gives sequence except for two leading terms
-
LinearRecurrence[{0, 2, 0, 1}, {0, 1, 1, 1}, 42] (* Vladimir Joseph Stephan Orlovsky, Feb 13 2012 *)
With[{c=Convergents[Sqrt[2],20]},Join[{0,1},Riffle[Denominator[c], Numerator[c]]]] (* Harvey P. Dale, Oct 03 2012 *)
-
a(n)=if(n<4,n>0,2*a(n-2)+a(n-4))
-
x='x+O('x^100); concat(0, Vec((x+x^2-x^3)/(1-2*x^2-x^4))) \\ Altug Alkan, Dec 04 2015
Thanks to
Michael Somos for several comments which improved this entry.
A054458
Convolution triangle based on A001333(n), n >= 1.
Original entry on oeis.org
1, 3, 1, 7, 6, 1, 17, 23, 9, 1, 41, 76, 48, 12, 1, 99, 233, 204, 82, 15, 1, 239, 682, 765, 428, 125, 18, 1, 577, 1935, 2649, 1907, 775, 177, 21, 1, 1393, 5368, 8680, 7656, 4010, 1272, 238, 24, 1, 3363, 14641, 27312, 28548, 18358, 7506, 1946, 308, 27, 1
Offset: 0
Fourth row polynomial (n=3): p(3,x)= 17+23*x+9*x^2+x^3.
Triangle begins :
1
3, 1
7, 6, 1
17, 23, 9, 1
41, 76, 48, 12, 1
99, 233, 204, 82, 15, 1
239, 682, 765, 428, 125, 18, 1. - _Philippe Deléham_, Mar 25 2012
(0, 3, -2/3, -1/3, 0, 0, 0, ...) DELTA (1, 0, 0, 0, ...) begins :
1
0, 1
0, 3, 1
0, 7, 6, 1
0, 17, 23, 9, 1
0, 41, 76, 48, 12, 1
0, 99, 233, 204, 82, 15, 1
0, 239, 682, 765, 428, 125, 15, 1. - _Philippe Deléham_, Mar 25 2012
A099088
Indices of prime companion Pell numbers, divided by 2 (A001333).
Original entry on oeis.org
2, 3, 4, 5, 7, 8, 16, 19, 29, 47, 59, 163, 257, 421, 937, 947, 1493, 1901, 6689, 8087, 9679, 28753, 79043, 129127, 145969, 165799, 168677, 170413, 172243, 278321, 552283
Offset: 1
- F. Le Lionnais, Les Nombres Remarquables. Paris: Hermann, p. 62, 1983.
-
lst={}; a=1; b=1; Do[c=a+2b; a=b; b=c; If[PrimeQ[c], AppendTo[lst, n]], {n, 2, 10000}]; lst
(* Second program: *)
Do[If[PrimeQ[Expand[((1 + Sqrt[2])^n + (1 - Sqrt[2])^n)/2]], Print[n]], {n, 0, 1000}] (* Artur Jasinski, Dec 10 2006 *)
-
isok(n) = isprime(polchebyshev(n, 1, I)/I^n); \\ Michel Marcus, Dec 07 2018
A204061
G.f.: exp( Sum_{n>=1} A001333(n)^2 * x^n/n ) where A001333(n) = A002203(n)/2, one-half the companion Pell numbers.
Original entry on oeis.org
1, 1, 5, 21, 101, 501, 2561, 13345, 70561, 377281, 2035285, 11059205, 60454005, 332138405, 1832677185, 10150115201, 56398558081, 314273655745, 1755700634981, 9830544087221, 55155558312901, 310027473436821, 1745567243959105, 9843160519978401, 55582528404717601
Offset: 0
G.f.: A(x) = 1 + x + 5*x^2 + 21*x^3 + 101*x^4 + 501*x^5 + 2561*x^6 +...
where log(A(x)) = x + 3^2*x^2/2 + 7^2*x^3/3 + 17^2*x^4/4 + 41^2*x^5/5 + 99^2*x^6/6 + 239^2*x^7/7 +...+ A001333(n)^2*x^n/n +...
The last digit of the terms in this sequence seems to be either a '1' or a '5':
by conjecture, a(n) == 0 (mod 5) whenever n has a 2 in its base 5 expansion;
if true, terms a(2*5^k) through a(3*5^k - 1) all end with digit '5' for k>=0.
-
{A001333(n)=polcoeff((1-x)/(1-2*x-x^2+x*O(x^n)),n)}
{a(n)=polcoeff(exp(sum(k=1, n, A001333(k)^2*x^k/k)+x*O(x^n)), n)}
-
{a(n)=polcoeff(1/(sqrt(1+x+x*O(x^n))*(1-6*x+x^2+x*O(x^n))^(1/4)),n)}
A054459
A001333(n), n >= 1, convolved with itself.
Original entry on oeis.org
1, 6, 23, 76, 233, 682, 1935, 5368, 14641, 39406, 104935, 276996, 725849, 1890258, 4896415, 12624752, 32419297, 82951766, 211573047, 538086716, 1364974409, 3454480250, 8724052271, 21989264232, 55326056977, 138975010110
Offset: 0
- R. P. Grimaldi, Ternary strings with no consecutive 0's and no consecutive 1's, Congressus Numerantium, 205 (2011), 129-149. (The sequence t_n, also the sequence lev_{n-1}.)
-
LinearRecurrence[{4, -2, -4, -1}, {1, 6, 23, 76}, 30] (* Paolo Xausa, Feb 06 2024 *)
A107769
a(n) = (A001333(n+1) - 2*A005409(floor((n+3)/2)) - 1) / 4.
Original entry on oeis.org
0, 1, 2, 8, 19, 54, 130, 334, 806, 1995, 4816, 11746, 28357, 68748, 165972, 401388, 969036, 2341141, 5652014, 13649228, 32952151, 79563330, 192082870, 463752730, 1119598130, 2703006111, 6525634012, 15754412038, 38034515209, 91823775384, 221682203880, 535188986904, 1292060510616, 3119311948585
Offset: 0
- G. C. Greubel, Table of n, a(n) for n = 0..1000
- Gy. Tasi and F. Mizukami, Quantum algebraic-combinatoric study of the conformational properties of n-alkanes, J. Math. Chemistry, 25, 1999, 55-64 (see p. 63, eq 25).
- Index entries for linear recurrences with constant coefficients, signature (3,1,-7,3,-1,1,1).
-
Table[(LucasL[n+2, 2] -4*Fibonacci[Floor[n/2]+2, 2] +2)/8, {n,0,40}] (* G. C. Greubel, May 24 2021 *)
-
[(lucas_number2(n+2,2,-1) -4*lucas_number1(2+(n//2),2,-1) +2)/8 for n in (0..40)] # G. C. Greubel, May 24 2021
Original entry on oeis.org
1, 1, 3, 3, 7, 7, 17, 17, 41, 41, 99, 99, 239, 239, 577, 577, 1393, 1393, 3363, 3363, 8119, 8119, 19601, 19601, 47321, 47321, 114243, 114243, 275807, 275807, 665857, 665857, 1607521, 1607521, 3880899, 3880899, 9369319, 9369319, 22619537, 22619537, 54608393
Offset: 1
The pieces illustrating a(3) = 3 are:
AAA BB. .CC
AAA .BB CC.
A048777
First partial sums of A005409; second partial sums of A001333.
Original entry on oeis.org
1, 5, 16, 44, 113, 281, 688, 1672, 4049, 9789, 23648, 57108, 137889, 332913, 803744, 1940432, 4684641, 11309749, 27304176, 65918140, 159140497, 384199177, 927538896, 2239277016, 5406092977, 13051463021, 31509019072, 76069501220, 183648021569, 443365544417
Offset: 0
-
I:=[1,5,16,44]; [n le 4 select I[n] else 4*Self(n-1) -4*Self(n-2) +Self(n-4): n in [1..36]]; // G. C. Greubel, Apr 23 2021
-
LinearRecurrence[{4,-4,0,1},{1,5,16,44},40] (* Harvey P. Dale, Nov 12 2017 *)
Table[(LucasL[n+3, 2] -2*(2n+5))/4, {n,0,35}] (* G. C. Greubel, Apr 23 2021 *)
-
[(lucas_number2(n+3,2,-1) -2*(2*n+5))/4 for n in (0..35)] # G. C. Greubel, Apr 23 2021
A054460
A001333(n), n >= 1, convolved twice with itself.
Original entry on oeis.org
1, 9, 48, 204, 765, 2649, 8680, 27312, 83313, 247985, 723624, 2077164, 5880797, 16454865, 45577200, 125130432, 340882113, 922265721, 2479938368, 6631802220, 17646603933, 46744464745, 123314065944, 324085913136, 848801213425
Offset: 0
-
LinearRecurrence[{6, -9, -4, 9, 6, 1}, {1, 9, 48, 204, 765, 2649}, 30] (* Paolo Xausa, Feb 06 2024 *)
A062134
Triangle of coefficients of polynomials (rising powers) useful for convolutions of A001333(n+1), n >= 0 (associated Pell numbers).
Original entry on oeis.org
1, 2, 0, 8, 24, 16, 336, 832, 576, 128, 12480, 28480, 23680, 8960, 1280, 481920, 1208832, 1167360, 552960, 130560, 12288, 22786560, 61834752, 65709056, 35911680, 10895360, 1763328, 118784, 1280885760, 3645444096
Offset: 0
Triangle begins:
{1};
{2,0};
{8,24,16};
{336,832,576,128};
...
pPL1(1,n) = 1+2*n.
pPL2(1,n) = 2.
PL(1; n) = A054459(n) = ((1+2*n)*PL(n+1)+PL(n))/4.
Cf.
A062133(n, m) (companion triangle),
A054458(n, m) (convolution triangle).
Showing 1-10 of 360 results.
Next
Comments