A204062 Expansion of g.f.: exp( Sum_{n>=1} A002203(n)^2 * x^n/n ) where A002203 are the companion Pell numbers.
1, 4, 26, 148, 867, 5048, 29428, 171512, 999653, 5826396, 33958734, 197925996, 1153597255, 6723657520, 39188347880, 228406429744, 1331250230601, 7759094953844, 45223319492482, 263580822001028, 1536261612513707, 8953988853081192, 52187671505973468
Offset: 0
Examples
G.f.: A(x) = 1 + 4*x + 26*x^2 + 148*x^3 + 867*x^4 + 5048*x^5 + ... where log(A(x)) = 2^2*x + 6^2*x^2/2 + 14^2*x^3/3 + 34^2*x^4/4 + 82^2*x^5/5 + 198^2*x^6/6 + 478^2*x^7/7 + ... + A002203(n)^2*x^n/n + ...
Links
- Vincenzo Librandi, Table of n, a(n) for n = 0..500
- Index entries for linear recurrences with constant coefficients, signature (4,10,4,-1).
Programs
-
Magma
I:=[1,4,26,148]; [n le 4 select I[n] else 4*Self(n-1) +10*Self(n-2) +4*Self(n-3) -Self(n-4): n in [1..31]]; // G. C. Greubel, May 25 2021
-
Mathematica
LinearRecurrence[{4,10,4,-1},{1,4,26,148},30] (* Vincenzo Librandi, Feb 12 2012 *) Table[(Fibonacci[2*n+4, 2] + 2*(-1)^n*(n+2))/16, {n, 0, 30}] (* G. C. Greubel, May 25 2021 *)
-
PARI
{A002203(n)=polcoeff(2*x*(1+x)/(1-2*x-x^2+x*O(x^n)),n)} {a(n)=polcoeff(exp(sum(k=1, n, A002203(k)^2*x^k/k)+x*O(x^n)), n)}
-
Sage
[(lucas_number1(2*n+4,2,-1) +2*(-1)^n*(n+2))/16 for n in (0..30)] # G. C. Greubel, May 25 2021
Formula
G.f.: 1/((1+x)^2*(1-6*x+x^2)).
Self-convolution of A026933.
Self-convolution 4th power of A204061.
a(n) = Pell(n-1)^2 + a(n-2) where Pell(n) = A000129(n).
a(n) = (1/8)*(A001109(n+2) + (-1)^n*(n+2)). - Bruno Berselli, Jan 10 2012
a(n) = (1/16)*(A000129(2*n+4) + 2*(-1)^n*(n+2)). - G. C. Greubel, May 25 2021
Comments