A208056
G.f.: exp( Sum_{n>=1} 2*Pell(n)^(2*n) * x^n/n ), where Pell(n) = A000129(n).
Original entry on oeis.org
1, 2, 18, 10450, 215011842, 168283323489554, 4613762736903044410402, 4429409381416783893511092430530, 147401742703370819998531165821635082467298, 169293247178836261713452084817353169649400098579929282
Offset: 0
G.f.: A(x) = 1 + 2*x + 18*x^2 + 10450*x^3 + 215011842*x^4 +...
such that, by definition,
log(A(x))/2 = x + 2^4*x^2/2 + 5^6*x^3/3 + 12^8*x^4/4 + 29^10*x^5/5 + 70^12*x^6/6 + 169^14*x^7/7 +...+ Pell(n)^(2*n)*x^n/n +...
-
{Pell(n)=polcoeff(x/(1-2*x-x^2 +x*O(x^n)),n)}
{a(n)=polcoeff(exp(sum(m=1,n,2*Pell(m)^(2*m)*x^m/m) +x*O(x^n)),n)}
for(n=0,15,print1(a(n),", "))
A208055
G.f.: exp( Sum_{n>=1} 2*Pell(n)^4 * x^n/n ), where Pell(n) = A000129(n).
Original entry on oeis.org
1, 2, 18, 450, 11362, 311426, 8857426, 259072706, 7730804098, 234255654466, 7184570715602, 222512186923010, 6947171244623714, 218374183252085826, 6903938704875627410, 219355658720815861378, 6999679608428089841154, 224210965624588803552642
Offset: 0
G.f.: A(x) = 1 + 2*x + 18*x^2 + 450*x^3 + 11362*x^4 + 311426*x^5 +...
such that, by definition,
log(A(x))/2 = x + 2^4*x^2/2 + 5^4*x^3/3 + 12^4*x^4/4 + 29^4*x^5/5 + 70^4*x^6/6 + 169^4*x^7/7 + 408^4*x^8/8 +...+ Pell(n)^4*x^n/n +...
-
{Pell(n)=polcoeff(x/(1-2*x-x^2 +x*O(x^n)),n)}
{a(n)=polcoeff(exp(sum(m=1,n,2*Pell(m)^4*x^m/m) +x*O(x^n)),n)}
for(n=0,30,print1(a(n),", "))
Showing 1-2 of 2 results.
Comments