cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-7 of 7 results.

A204061 G.f.: exp( Sum_{n>=1} A001333(n)^2 * x^n/n ) where A001333(n) = A002203(n)/2, one-half the companion Pell numbers.

Original entry on oeis.org

1, 1, 5, 21, 101, 501, 2561, 13345, 70561, 377281, 2035285, 11059205, 60454005, 332138405, 1832677185, 10150115201, 56398558081, 314273655745, 1755700634981, 9830544087221, 55155558312901, 310027473436821, 1745567243959105, 9843160519978401, 55582528404717601
Offset: 0

Views

Author

Paul D. Hanna, Jan 10 2012

Keywords

Comments

a(n) == 1 (mod 5) iff n has no 2's in its base 5 expansion (A023729), otherwise a(n) == 0 (mod 5); this is a conjecture needing proof.

Examples

			G.f.: A(x) = 1 + x + 5*x^2 + 21*x^3 + 101*x^4 + 501*x^5 + 2561*x^6 +...
where log(A(x)) = x + 3^2*x^2/2 + 7^2*x^3/3 + 17^2*x^4/4 + 41^2*x^5/5 + 99^2*x^6/6 + 239^2*x^7/7 +...+ A001333(n)^2*x^n/n +...
The last digit of the terms in this sequence seems to be either a '1' or a '5':
by conjecture, a(n) == 0 (mod 5) whenever n has a 2 in its base 5 expansion;
if true, terms a(2*5^k) through a(3*5^k - 1) all end with digit '5' for k>=0.
		

Crossrefs

Programs

  • PARI
    {A001333(n)=polcoeff((1-x)/(1-2*x-x^2+x*O(x^n)),n)}
    {a(n)=polcoeff(exp(sum(k=1, n, A001333(k)^2*x^k/k)+x*O(x^n)), n)}
    
  • PARI
    {a(n)=polcoeff(1/(sqrt(1+x+x*O(x^n))*(1-6*x+x^2+x*O(x^n))^(1/4)),n)}

Formula

G.f.: 1 / ( sqrt(1+x) * (1-6*x+x^2)^(1/4) ).
Self-convolution yields A026933: Sum_{k=0..n} a(n-k)*a(k) = Sum_{k=0..n} D(n-k,k)^2 where D(n,k) = A008288(n,k) are the Delannoy numbers.
a(n) ~ 2^(1/8) * GAMMA(3/4) * (3+2*sqrt(2))^(n+1/2) / (4 * Pi * n^(3/4)). - Vaclav Kotesovec, Oct 30 2014

A026933 Self-convolution of array T given by A008288.

Original entry on oeis.org

1, 2, 11, 52, 269, 1414, 7575, 41064, 224665, 1237898, 6859555, 38187164, 213408805, 1196524814, 6727323439, 37915058384, 214140178225, 1211694546194, 6867622511675, 38981807403268, 221562006394173, 1260814207833750, 7182599953332423, 40958645048598840, 233779564099963081
Offset: 0

Views

Author

Keywords

Crossrefs

Programs

  • Mathematica
    Table[SeriesCoefficient[1/(1+x)/Sqrt[1-6*x+x^2],{x,0,n}],{n,0,20}] (* Vaclav Kotesovec, Oct 08 2012 *)
    a[ n_]:= Sum[ SeriesCoefficient[ SeriesCoefficient[1/(1-x-y-x*y) , {x,0,n-k}] , {y, 0, k}]^2, {k, 0, n}]; (* Michael Somos, Jun 27 2017 *)
    A026933[n_]:= Sum[(Binomial[n, k]*Hypergeometric2F1[-k,k-n,-n,-1])^2, {k,0,n}];
    Table[A026933[n], {n, 0, 40}] (* G. C. Greubel, May 25 2021 *)
  • PARI
    /* Sum of squares of Delannoy numbers: */
    {a(n)=sum(k=0,n,polcoeff(polcoeff(1/(1-x-y-x*y +x*O(x^n)+y*O(y^k)),n-k,x),k,y)^2)} \\ Paul D. Hanna, Jan 10 2012
    
  • PARI
    /* Involving squares of companion Pell numbers: */
    {A002203(n)=polcoeff(2*x*(1+x)/(1-2*x-x^2+x*O(x^n)),n)}
    {a(n)=polcoeff(exp(sum(k=1, n, A002203(k)^2/2*x^k/k)+x*O(x^n)), n)}
    \\ Paul D. Hanna, Jan 10 2012
    
  • PARI
    my(x='x+O('x^66)); Vec( 1/(1+x)/sqrt(1-6*x+x^2) ) \\ Joerg Arndt, May 04 2013
    
  • Sage
    def A026933_list(prec):
        P. = PowerSeriesRing(ZZ, prec)
        return P( 1/((1+x)*sqrt(1-6*x+x^2)) ).list()
    A026933_list(40) # G. C. Greubel, May 25 2021

Formula

a(n) = Sum_{k=0..n} D(n-k,k)^2 where D(n,k) = A008288(n,k) are the Delannoy numbers. - Paul D. Hanna, Jan 10 2012
G.f.: 1/((1+x)*sqrt(1-6*x+x^2)). - Vladeta Jovovic, May 13 2003
a(n) = (-1)^n*Sum_{k=0...n} (-1)^k*A001850(k). - Benoit Cloitre, Sep 28 2005
G.f.: exp( Sum_{n>=1} A002203(n)^2/2 * x^n/n ), where A002203 are the companion Pell numbers. - Paul D. Hanna, Jan 10 2012
Self-convolution yields A204062; self-convolution of A204061. - Paul D. Hanna, Jan 10 2012
From Vaclav Kotesovec, Oct 08 2012: (Start)
Recurrence: n*a(n) = (5*n-3)*a(n-1) + (5*n-2)*a(n-2) - (n-1)*a(n-3).
a(n) ~ sqrt(24+17*sqrt(2))*(3+2*sqrt(2))^n/(8*sqrt(Pi*n)). (End)
0 = +a(n)*(+a(n+1) -8*a(n+2) -7*a(n+3) +2*a(n+4)) +a(n+1)*(-2*a(n+1) +22*a(n+2) +20*a(n+3) -7*a(n+4)) +a(n+2)*(+30*a(n+2) +22*a(n+3) -8*a(n+4)) +a(n+3)*(-2*a(n+3) +a(n+4)) for all n in Z. - Michael Somos, Jun 27 2017

Extensions

More terms from Vladeta Jovovic, May 13 2003

A212442 G.f.: exp( Sum_{n>=1} A002203(n)^3 * x^n/n ), where A002203 is the companion Pell numbers.

Original entry on oeis.org

1, 8, 140, 1864, 26602, 373080, 5253564, 73911192, 1040045475, 14634444720, 205922568360, 2897549559600, 40771618763540, 573700205699920, 8072574516567400, 113589743388536528, 1598328982089075749, 22490195492277648120, 316461065874934143252
Offset: 0

Views

Author

Paul D. Hanna, May 17 2012

Keywords

Comments

More generally, exp(Sum_{k>=1} A002203(k)^(2*n+1) * x^k/k) = Product_{k=0..n} 1/(1 - (-1)^(n-k)*A002203(2*k+1)*x - x^2)^binomial(2*n+1,n-k).
Compare to g.f. exp(Sum_{k>=1} A002203(k) * x^k/k) = 1/(1-2*x-x^2).

Examples

			G.f.: A(x) = 1 + 8*x + 140*x^2 + 1864*x^3 + 26602*x^4 + 373080*x^5 + ...
where
log(A(x)) = 2^3*x + 6^3*x^2/2 + 14^3*x^3/3 + 34^3*x^4/4 + 82^3*x^5/5 + 198^3*x^6/6 + 478^3*x^7/7 + 1154^3*x^8/8 + ... + A002203(n)^3*x^n/n + ...
Also, the g.f. equals the infinite product:
A(x) = 1/( (1-2*x-x^2)^4 * (1-6*x^2+x^4)^16 * (1-14*x^3-x^6)^64 * (1-34*x^4+x^8)^280 * (1-82*x^5-x^10)^1344 * (1-198*x^6+x^12)^6496 * ... * (1 - A002203(n)*x^n + (-1)^n*x^(2*n))^A212443(n) * ...).
The exponents in these products begin:
A212443 = [4, 16, 64, 280, 1344, 6496, 32640, 166320, 862400, ...].
The companion Pell numbers begin (at offset 1):
A002203 = [2, 6, 14, 34, 82, 198, 478, 1154, 2786, 6726, 16238, ...].
		

Crossrefs

Programs

  • Mathematica
    CoefficientList[Series[1/((1+2x-x^2)^3(1-14x-x^2)),{x,0,30}],x] (* or *) LinearRecurrence[{8,76,136,-38,-136,76,-8,-1},{1,8,140,1864,26602,373080,5253564,73911192},30] (* Harvey P. Dale, Feb 15 2015 *)
  • PARI
    /* Subroutine for the PARI programs that follow: */
    {A002203(n)=polcoeff(2*x*(1+x)/(1-2*x-x^2+x*O(x^n)),n)}
    
  • PARI
    /* G.F. by Definition: */
    {a(n)=polcoeff(exp(sum(k=1, n, A002203(k)^3*x^k/k)+x*O(x^n)), n)}
    
  • PARI
    /* G.F. as a Finite Product: */
    {a(n, m=1)=polcoeff(prod(k=0, m, 1/(1 - (-1)^(m-k)*A002203(2*k+1)*x - x^2+x*O(x^n))^binomial(2*m+1, m-k)), n)}
    
  • PARI
    /* G.F. as an Infinite Product: */
    {A212443(n)=(1/n)*sumdiv(n,d, moebius(n/d)*A002203(d)^2)}
    {a(n)=polcoeff(1/prod(m=1,n, (1 - A002203(m)*x^m + (-1)^m*x^(2*m) +x*O(x^n))^A212443(m)),n)}
    for(n=0,30,print1(a(n),", "))

Formula

G.f.: 1 / ( (1+2*x-x^2)^3 * (1-14*x-x^2) ).
G.f.: 1 / Product_{n>=1} (1 - A002203(n)*x^n + (-1)^n*x^(2*n))^A212443(n) where A212443(n) = (1/n)*Sum_{d|n} moebius(n/d)*A002203(d)^2.
a(0)=1, a(1)=8, a(2)=140, a(3)=1864, a(4)=26602, a(5)=373080, a(6)=5253564, a(7)=73911192, a(n) = 8*a(n-1) + 76*a(n-2) + 136*a(n-3) - 38*a(n-4) - 136*a(n-5) + 76*a(n-6) - 8*a(n-7) - a(n-8). - Harvey P. Dale, Feb 15 2015

A208034 G.f.: exp( Sum_{n>=1} 2*Pell(n)^2 * x^n/n ), where Pell(n) = A000129(n).

Original entry on oeis.org

1, 2, 6, 26, 122, 602, 3062, 15906, 83906, 447842, 2412566, 13094490, 71513210, 392592410, 2164815590, 11982792386, 66548673282, 370672213826, 2069974290726, 11586244722202, 64986102400122, 365183031749722, 2055594717395926, 11588727763937506, 65425688924696002
Offset: 0

Views

Author

Paul D. Hanna, Feb 22 2012

Keywords

Comments

Conjectures: For all positive integers k,
(1) exp( Sum_{n>=1} 2*Pell(n)^(2*k) * x^n/n ) is an integer series;
(2) exp( Sum_{n>=1} 2*Pell(n)^(2*k-1) * x^n/n ) is NOT an integer series;
(3) exp( Sum_{n>=1} Pell(n)^(2*k) * x^n/n ) is NOT an integer series.

Examples

			G.f.: A(x) = 1 + 2*x + 6*x^2 + 26*x^3 + 122*x^4 + 602*x^5 + 3062*x^6 + ...
such that, by definition,
log(A(x))/2 = x + 2^2*x^2/2 + 5^2*x^3/3 + 12^2*x^4/4 + 29^2*x^5/5 + 70^2*x^6/6 + 169^2*x^7/7 + 408^2*x^8/8 + ... + Pell(n)^2*x^n/n + ...
		

Crossrefs

Programs

  • Mathematica
    CoefficientList[Series[Sqrt[1 + x] / (1 - 6 x + x^2)^(1/4), {x, 0, 33}], x] (* Vincenzo Librandi, Feb 26 2018 *)
  • PARI
    {Pell(n)=polcoeff(x/(1-2*x-x^2 +x*O(x^n)),n)}
    {a(n)=polcoeff(exp(sum(m=1,n,2*Pell(m)^2*x^m/m) +x*O(x^n)),n)}
    for(n=0,30,print1(a(n),", "))
    
  • PARI
    seq(n)={Vec(sqrt(1 + x + O(x^n)) / sqrt(sqrt(1 - 6*x + x^2 + O(x^n))))} \\ Andrew Howroyd, Feb 25 2018

Formula

G.f.: sqrt(1 + x) / (1 - 6*x + x^2)^(1/4).
a(n) ~ 2^(1/8) * (1 + sqrt(2))^(2*n) / (Gamma(1/4) * n^(3/4)). - Vaclav Kotesovec, Oct 31 2024

A208056 G.f.: exp( Sum_{n>=1} 2*Pell(n)^(2*n) * x^n/n ), where Pell(n) = A000129(n).

Original entry on oeis.org

1, 2, 18, 10450, 215011842, 168283323489554, 4613762736903044410402, 4429409381416783893511092430530, 147401742703370819998531165821635082467298, 169293247178836261713452084817353169649400098579929282
Offset: 0

Views

Author

Paul D. Hanna, Feb 22 2012

Keywords

Comments

Given g.f. A(x), note that A(x)^(1/2) does not yield an integer series.

Examples

			G.f.: A(x) = 1 + 2*x + 18*x^2 + 10450*x^3 + 215011842*x^4 +...
such that, by definition,
log(A(x))/2 = x + 2^4*x^2/2 + 5^6*x^3/3 + 12^8*x^4/4 + 29^10*x^5/5 + 70^12*x^6/6 + 169^14*x^7/7 +...+ Pell(n)^(2*n)*x^n/n +...
		

Crossrefs

Programs

  • PARI
    {Pell(n)=polcoeff(x/(1-2*x-x^2 +x*O(x^n)),n)}
    {a(n)=polcoeff(exp(sum(m=1,n,2*Pell(m)^(2*m)*x^m/m) +x*O(x^n)),n)}
    for(n=0,15,print1(a(n),", "))

A208055 G.f.: exp( Sum_{n>=1} 2*Pell(n)^4 * x^n/n ), where Pell(n) = A000129(n).

Original entry on oeis.org

1, 2, 18, 450, 11362, 311426, 8857426, 259072706, 7730804098, 234255654466, 7184570715602, 222512186923010, 6947171244623714, 218374183252085826, 6903938704875627410, 219355658720815861378, 6999679608428089841154, 224210965624588803552642
Offset: 0

Views

Author

Paul D. Hanna, Feb 22 2012

Keywords

Examples

			G.f.: A(x) = 1 + 2*x + 18*x^2 + 450*x^3 + 11362*x^4 + 311426*x^5 +...
such that, by definition,
log(A(x))/2 = x + 2^4*x^2/2 + 5^4*x^3/3 + 12^4*x^4/4 + 29^4*x^5/5 + 70^4*x^6/6 + 169^4*x^7/7 + 408^4*x^8/8 +...+ Pell(n)^4*x^n/n +...
		

Crossrefs

Programs

  • PARI
    {Pell(n)=polcoeff(x/(1-2*x-x^2 +x*O(x^n)),n)}
    {a(n)=polcoeff(exp(sum(m=1,n,2*Pell(m)^4*x^m/m) +x*O(x^n)),n)}
    for(n=0,30,print1(a(n),", "))

Formula

The o.g.f. A(x) = 1 + 2*x + 18*x^2 + 450*x^3 + ... is an algebraic function: A(x)^32 = (1 + 6*x + x^2)^4/( (1 - 34*x + x^2)*(1 - 2*x + x^2)^3 ). Cf. A207969. - Peter Bala, Apr 03 2014
From Vaclav Kotesovec, Oct 31 2024: (Start)
G.f.: (1 + x*(6 + x))^(1/8) / ((1 - x)^(3/16)*(1 + (-17 + 12*sqrt(2))*x)^(1/32) * (1 - (17 + 12*sqrt(2))*x)^(1/32)).
a(n) ~ 5^(1/8) * (1 + sqrt(2))^(4*n) / (2^(13/64) * 3^(1/32) * Gamma(1/32) * n^(31/32)). (End)

A215171 G.f.: exp( Sum_{n>=1} A002203(n)^4 * x^n/n ), where A002203 is the companion Pell numbers.

Original entry on oeis.org

1, 16, 776, 23856, 834596, 28135056, 957599096, 32515276336, 1104679254346, 37525681919856, 1274775209167896, 43304782313176656, 1471088177488196276, 49973690736096892016, 1697634414511896630376, 57669596280038205388752, 1959068639950002397935907
Offset: 0

Views

Author

Paul D. Hanna, Aug 05 2012

Keywords

Comments

More generally, exp(Sum_{k>=1} A002203(k)^(2*n) * x^k/k) = 1/(1 - (-1)^n*x)^binomial(2*n,n) * Product_{k=1..n} 1/(1 - (-1)^(n-k)*A002203(2*k)*x - x^2)^binomial(2*n,n-k).
Compare to g.f. exp(Sum_{k>=1} A002203(k) * x^k/k) = 1/(1-2*x-x^2).

Examples

			G.f.: A(x) = 1 + 16*x + 776*x^2 + 23856*x^3 + 834596*x^4 + 28135056*x^5 +...
where
log(A(x)) = 2^4*x + 6^4*x^2/2 + 14^4*x^3/3 + 34^4*x^4/4 + 82^4*x^5/5 + 198^4*x^6/6 + 478^4*x^7/7 + 1154^4*x^8/8 +...+ A002203(n)^4*x^n/n +...
		

Crossrefs

Programs

  • PARI
    {A002203(n)=polcoeff(2*x*(1+x)/(1-2*x-x^2+x*O(x^n)),n)}
    {a(n)=polcoeff(exp(sum(k=1, n, A002203(k)^4*x^k/k)+x*O(x^n)), n)}
    
  • PARI
    {A002203(n)=polcoeff(2*x*(1+x)/(1-2*x-x^2+x*O(x^n)),n)}
    {a(n, m=2)=polcoeff(1/(1 - (-1)^m*x+x*O(x^n))^binomial(2*m, m) * prod(k=1, m, 1/(1 - (-1)^(m-k)*A002203(2*k)*x + x^2+x*O(x^n))^binomial(2*m, m-k)), n)}

Formula

G.f.: 1/((1-x)^6*(1+6*x+x^2)^4*(1-34*x+x^2)).
Showing 1-7 of 7 results.