A204061
G.f.: exp( Sum_{n>=1} A001333(n)^2 * x^n/n ) where A001333(n) = A002203(n)/2, one-half the companion Pell numbers.
Original entry on oeis.org
1, 1, 5, 21, 101, 501, 2561, 13345, 70561, 377281, 2035285, 11059205, 60454005, 332138405, 1832677185, 10150115201, 56398558081, 314273655745, 1755700634981, 9830544087221, 55155558312901, 310027473436821, 1745567243959105, 9843160519978401, 55582528404717601
Offset: 0
G.f.: A(x) = 1 + x + 5*x^2 + 21*x^3 + 101*x^4 + 501*x^5 + 2561*x^6 +...
where log(A(x)) = x + 3^2*x^2/2 + 7^2*x^3/3 + 17^2*x^4/4 + 41^2*x^5/5 + 99^2*x^6/6 + 239^2*x^7/7 +...+ A001333(n)^2*x^n/n +...
The last digit of the terms in this sequence seems to be either a '1' or a '5':
by conjecture, a(n) == 0 (mod 5) whenever n has a 2 in its base 5 expansion;
if true, terms a(2*5^k) through a(3*5^k - 1) all end with digit '5' for k>=0.
-
{A001333(n)=polcoeff((1-x)/(1-2*x-x^2+x*O(x^n)),n)}
{a(n)=polcoeff(exp(sum(k=1, n, A001333(k)^2*x^k/k)+x*O(x^n)), n)}
-
{a(n)=polcoeff(1/(sqrt(1+x+x*O(x^n))*(1-6*x+x^2+x*O(x^n))^(1/4)),n)}
A026933
Self-convolution of array T given by A008288.
Original entry on oeis.org
1, 2, 11, 52, 269, 1414, 7575, 41064, 224665, 1237898, 6859555, 38187164, 213408805, 1196524814, 6727323439, 37915058384, 214140178225, 1211694546194, 6867622511675, 38981807403268, 221562006394173, 1260814207833750, 7182599953332423, 40958645048598840, 233779564099963081
Offset: 0
-
Table[SeriesCoefficient[1/(1+x)/Sqrt[1-6*x+x^2],{x,0,n}],{n,0,20}] (* Vaclav Kotesovec, Oct 08 2012 *)
a[ n_]:= Sum[ SeriesCoefficient[ SeriesCoefficient[1/(1-x-y-x*y) , {x,0,n-k}] , {y, 0, k}]^2, {k, 0, n}]; (* Michael Somos, Jun 27 2017 *)
A026933[n_]:= Sum[(Binomial[n, k]*Hypergeometric2F1[-k,k-n,-n,-1])^2, {k,0,n}];
Table[A026933[n], {n, 0, 40}] (* G. C. Greubel, May 25 2021 *)
-
/* Sum of squares of Delannoy numbers: */
{a(n)=sum(k=0,n,polcoeff(polcoeff(1/(1-x-y-x*y +x*O(x^n)+y*O(y^k)),n-k,x),k,y)^2)} \\ Paul D. Hanna, Jan 10 2012
-
/* Involving squares of companion Pell numbers: */
{A002203(n)=polcoeff(2*x*(1+x)/(1-2*x-x^2+x*O(x^n)),n)}
{a(n)=polcoeff(exp(sum(k=1, n, A002203(k)^2/2*x^k/k)+x*O(x^n)), n)}
\\ Paul D. Hanna, Jan 10 2012
-
my(x='x+O('x^66)); Vec( 1/(1+x)/sqrt(1-6*x+x^2) ) \\ Joerg Arndt, May 04 2013
-
def A026933_list(prec):
P. = PowerSeriesRing(ZZ, prec)
return P( 1/((1+x)*sqrt(1-6*x+x^2)) ).list()
A026933_list(40) # G. C. Greubel, May 25 2021
A212442
G.f.: exp( Sum_{n>=1} A002203(n)^3 * x^n/n ), where A002203 is the companion Pell numbers.
Original entry on oeis.org
1, 8, 140, 1864, 26602, 373080, 5253564, 73911192, 1040045475, 14634444720, 205922568360, 2897549559600, 40771618763540, 573700205699920, 8072574516567400, 113589743388536528, 1598328982089075749, 22490195492277648120, 316461065874934143252
Offset: 0
G.f.: A(x) = 1 + 8*x + 140*x^2 + 1864*x^3 + 26602*x^4 + 373080*x^5 + ...
where
log(A(x)) = 2^3*x + 6^3*x^2/2 + 14^3*x^3/3 + 34^3*x^4/4 + 82^3*x^5/5 + 198^3*x^6/6 + 478^3*x^7/7 + 1154^3*x^8/8 + ... + A002203(n)^3*x^n/n + ...
Also, the g.f. equals the infinite product:
A(x) = 1/( (1-2*x-x^2)^4 * (1-6*x^2+x^4)^16 * (1-14*x^3-x^6)^64 * (1-34*x^4+x^8)^280 * (1-82*x^5-x^10)^1344 * (1-198*x^6+x^12)^6496 * ... * (1 - A002203(n)*x^n + (-1)^n*x^(2*n))^A212443(n) * ...).
The exponents in these products begin:
A212443 = [4, 16, 64, 280, 1344, 6496, 32640, 166320, 862400, ...].
The companion Pell numbers begin (at offset 1):
A002203 = [2, 6, 14, 34, 82, 198, 478, 1154, 2786, 6726, 16238, ...].
- G. C. Greubel, Table of n, a(n) for n = 0..865
- Index entries for linear recurrences with constant coefficients, signature (8,76,136,-38,-136,76,-8,-1).
-
CoefficientList[Series[1/((1+2x-x^2)^3(1-14x-x^2)),{x,0,30}],x] (* or *) LinearRecurrence[{8,76,136,-38,-136,76,-8,-1},{1,8,140,1864,26602,373080,5253564,73911192},30] (* Harvey P. Dale, Feb 15 2015 *)
-
/* Subroutine for the PARI programs that follow: */
{A002203(n)=polcoeff(2*x*(1+x)/(1-2*x-x^2+x*O(x^n)),n)}
-
/* G.F. by Definition: */
{a(n)=polcoeff(exp(sum(k=1, n, A002203(k)^3*x^k/k)+x*O(x^n)), n)}
-
/* G.F. as a Finite Product: */
{a(n, m=1)=polcoeff(prod(k=0, m, 1/(1 - (-1)^(m-k)*A002203(2*k+1)*x - x^2+x*O(x^n))^binomial(2*m+1, m-k)), n)}
-
/* G.F. as an Infinite Product: */
{A212443(n)=(1/n)*sumdiv(n,d, moebius(n/d)*A002203(d)^2)}
{a(n)=polcoeff(1/prod(m=1,n, (1 - A002203(m)*x^m + (-1)^m*x^(2*m) +x*O(x^n))^A212443(m)),n)}
for(n=0,30,print1(a(n),", "))
A208034
G.f.: exp( Sum_{n>=1} 2*Pell(n)^2 * x^n/n ), where Pell(n) = A000129(n).
Original entry on oeis.org
1, 2, 6, 26, 122, 602, 3062, 15906, 83906, 447842, 2412566, 13094490, 71513210, 392592410, 2164815590, 11982792386, 66548673282, 370672213826, 2069974290726, 11586244722202, 64986102400122, 365183031749722, 2055594717395926, 11588727763937506, 65425688924696002
Offset: 0
G.f.: A(x) = 1 + 2*x + 6*x^2 + 26*x^3 + 122*x^4 + 602*x^5 + 3062*x^6 + ...
such that, by definition,
log(A(x))/2 = x + 2^2*x^2/2 + 5^2*x^3/3 + 12^2*x^4/4 + 29^2*x^5/5 + 70^2*x^6/6 + 169^2*x^7/7 + 408^2*x^8/8 + ... + Pell(n)^2*x^n/n + ...
-
CoefficientList[Series[Sqrt[1 + x] / (1 - 6 x + x^2)^(1/4), {x, 0, 33}], x] (* Vincenzo Librandi, Feb 26 2018 *)
-
{Pell(n)=polcoeff(x/(1-2*x-x^2 +x*O(x^n)),n)}
{a(n)=polcoeff(exp(sum(m=1,n,2*Pell(m)^2*x^m/m) +x*O(x^n)),n)}
for(n=0,30,print1(a(n),", "))
-
seq(n)={Vec(sqrt(1 + x + O(x^n)) / sqrt(sqrt(1 - 6*x + x^2 + O(x^n))))} \\ Andrew Howroyd, Feb 25 2018
A208056
G.f.: exp( Sum_{n>=1} 2*Pell(n)^(2*n) * x^n/n ), where Pell(n) = A000129(n).
Original entry on oeis.org
1, 2, 18, 10450, 215011842, 168283323489554, 4613762736903044410402, 4429409381416783893511092430530, 147401742703370819998531165821635082467298, 169293247178836261713452084817353169649400098579929282
Offset: 0
G.f.: A(x) = 1 + 2*x + 18*x^2 + 10450*x^3 + 215011842*x^4 +...
such that, by definition,
log(A(x))/2 = x + 2^4*x^2/2 + 5^6*x^3/3 + 12^8*x^4/4 + 29^10*x^5/5 + 70^12*x^6/6 + 169^14*x^7/7 +...+ Pell(n)^(2*n)*x^n/n +...
-
{Pell(n)=polcoeff(x/(1-2*x-x^2 +x*O(x^n)),n)}
{a(n)=polcoeff(exp(sum(m=1,n,2*Pell(m)^(2*m)*x^m/m) +x*O(x^n)),n)}
for(n=0,15,print1(a(n),", "))
A208055
G.f.: exp( Sum_{n>=1} 2*Pell(n)^4 * x^n/n ), where Pell(n) = A000129(n).
Original entry on oeis.org
1, 2, 18, 450, 11362, 311426, 8857426, 259072706, 7730804098, 234255654466, 7184570715602, 222512186923010, 6947171244623714, 218374183252085826, 6903938704875627410, 219355658720815861378, 6999679608428089841154, 224210965624588803552642
Offset: 0
G.f.: A(x) = 1 + 2*x + 18*x^2 + 450*x^3 + 11362*x^4 + 311426*x^5 +...
such that, by definition,
log(A(x))/2 = x + 2^4*x^2/2 + 5^4*x^3/3 + 12^4*x^4/4 + 29^4*x^5/5 + 70^4*x^6/6 + 169^4*x^7/7 + 408^4*x^8/8 +...+ Pell(n)^4*x^n/n +...
-
{Pell(n)=polcoeff(x/(1-2*x-x^2 +x*O(x^n)),n)}
{a(n)=polcoeff(exp(sum(m=1,n,2*Pell(m)^4*x^m/m) +x*O(x^n)),n)}
for(n=0,30,print1(a(n),", "))
A215171
G.f.: exp( Sum_{n>=1} A002203(n)^4 * x^n/n ), where A002203 is the companion Pell numbers.
Original entry on oeis.org
1, 16, 776, 23856, 834596, 28135056, 957599096, 32515276336, 1104679254346, 37525681919856, 1274775209167896, 43304782313176656, 1471088177488196276, 49973690736096892016, 1697634414511896630376, 57669596280038205388752, 1959068639950002397935907
Offset: 0
G.f.: A(x) = 1 + 16*x + 776*x^2 + 23856*x^3 + 834596*x^4 + 28135056*x^5 +...
where
log(A(x)) = 2^4*x + 6^4*x^2/2 + 14^4*x^3/3 + 34^4*x^4/4 + 82^4*x^5/5 + 198^4*x^6/6 + 478^4*x^7/7 + 1154^4*x^8/8 +...+ A002203(n)^4*x^n/n +...
-
{A002203(n)=polcoeff(2*x*(1+x)/(1-2*x-x^2+x*O(x^n)),n)}
{a(n)=polcoeff(exp(sum(k=1, n, A002203(k)^4*x^k/k)+x*O(x^n)), n)}
-
{A002203(n)=polcoeff(2*x*(1+x)/(1-2*x-x^2+x*O(x^n)),n)}
{a(n, m=2)=polcoeff(1/(1 - (-1)^m*x+x*O(x^n))^binomial(2*m, m) * prod(k=1, m, 1/(1 - (-1)^(m-k)*A002203(2*k)*x + x^2+x*O(x^n))^binomial(2*m, m-k)), n)}
Showing 1-7 of 7 results.
Comments