A343125 Triangle T(k, n) = (n+3)*(k-n) - 4, k >= 2, 1 <= n <= k-1, read by rows.
0, 4, 1, 8, 6, 2, 12, 11, 8, 3, 16, 16, 14, 10, 4, 20, 21, 20, 17, 12, 5, 24, 26, 26, 24, 20, 14, 6, 28, 31, 32, 31, 28, 23, 16, 7, 32, 36, 38, 38, 36, 32, 26, 18, 8, 36, 41, 44, 45, 44, 41, 36, 29, 20, 9, 40, 46, 50, 52, 52, 50, 46, 40, 32, 22, 10
Offset: 2
Examples
Triangle T(k, n) begins: k \ n| 1 2 3 4 5 6 7 8 9 10 11 ------+---------------------------------- 2 | 0 3 | 4 1 4 | 8 6 2 5 | 12 11 8 3 6 | 16 16 14 10 4 7 | 20 21 20 17 12 5 8 | 24 26 26 24 20 14 6 9 | 28 31 32 31 28 23 16 7 10 | 32 36 38 38 36 32 26 18 8 11 | 36 41 44 45 44 41 36 29 20 9 12 | 40 46 50 52 52 50 46 40 32 22 10 . The following are the closed formulas for k = 3, 4 for A(k, n) = Sum_{m=0..n} F(k, m)^2, with F(k, n) = A092921(k, n), the k-generalized Fibonacci numbers, and A(k, n) = A343138(k, n), the sum of squares of F(k, n). These formulas are derived from the closed formula in the formula section. Of course further simplifications are possible. For k = 2, T(2, 1) = 0 so illustrations start with k = 3. k | Formula --+-------------------------------------------------------- 3 | Sum_{m=0..n} F(3,m)^2 = (1/4)*(2*F(3,n)*F(3,n+2) + 4*F(3,n+1)*F(3,n+2) - (k - 2)*F(3,n)^2 - T(3,1)*F(3,n+1)^2 - T(3,2)*F(3,n+2)^2 + 1). 4 | Sum_{m=0..n} F(3,m)^2 = (1/6)*(-2*F(4,n)*F(4,n+1) + 2*F(4,n)*F(4,n+3) + 4*F(4,n+1)*F(4,n+3) + 6*F(4,n+2)*F(4,n+3) - (k-2)*F(4,n)^2 - T(4,1)*F(4,n+1)^2 - T(4, 2)*F(4,n+2)^2 - T(4,3)*F(4,n+3)^2 + 2).
References
- Raphael Schumacher, How to Sum the Squares of the Tetranacci Numbers and the Fibonacci m-step Numbers, Fibonacci Quarterly, 57, (2019), 168-175.
- Raphael Schumacher, Explicit Formulas for Sums Involving the Squares of the First n Tribonacci Numbers, Fibonacci Quarterly, 58 (2020), 194-202.
Links
- Russell Jay Hendel, Sums of Squares: Methods for Proving Identity Families, arXiv:2103.16756 [math.NT], 2021.
- Proof Wiki, Sum of Sequence of Squares of Fibonacci Numbers
Programs
-
Maple
T := (k, n) -> (n + 3)*(k - n) - 4: seq(print(seq(T(k, n), n=1..k-1)), k = 2..12); # Peter Luschny, Apr 02 2021
-
Mathematica
Table[(n + 3) (k - n) - 4, {k, 2, 12}, {n, k - 1}] // Flatten (* Michael De Vlieger, Apr 06 2021 *)
-
PARI
T(k,n)=(n + 3)*(k - n) - 4 for(k = 2,12,for(n = 1,k - 1, print1(T(k,n),", ")))
-
Sage
flatten([[(n+3)*(k-n) -4 for n in (1..k-1)] for k in (2..15)]) # G. C. Greubel, Nov 22 2021
Formula
Let F(k, n) = A092921(k, n), the k-generalized Fibonacci numbers. Let A(k, n) = A343138(k, n) = Sum_{m=0..n} F(k, m)^2, the sum of the first m+1 k-generalized Fibonacci numbers. Then, for k >= 2, a closed formula for A(k, n) is:
A(k, n) = (1/(2*k-2)) * (Sum_{j=0..k-2, m=j+1..k-1} 2*(j+1)*(m-k+1) * F(k, n+j) * F(k, n+m)) - (k-2)*F(k, n)^2 - Sum_{j=1..k}(T(k, j) * F(k, n+j)^2) + (k-2)).
From G. C. Greubel, Nov 22 2021: (Start)
T(2*n-2, n) = A028557(n-2), n >= 2.
T(4*n-6, n) = 2*A140672(n-2), n >= 2. (End)
Comments