cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 20 results. Next

A373432 Triangle read by rows. Coefficients of the polynomials P(n, x) * EZ(n, x), where P denote the Pascal polynomials and EZ the zig-zag Eulerian polynomials A205497.

Original entry on oeis.org

1, 1, 1, 1, 2, 1, 1, 4, 6, 4, 1, 1, 7, 19, 26, 19, 7, 1, 1, 12, 52, 116, 150, 116, 52, 12, 1, 1, 20, 130, 430, 845, 1052, 845, 430, 130, 20, 1, 1, 33, 312, 1453, 4023, 7218, 8736, 7218, 4023, 1453, 312, 33, 1, 1, 54, 730, 4639, 17316, 42142, 70593, 83610, 70593, 42142, 17316, 4639, 730, 54, 1
Offset: 0

Views

Author

Peter Luschny, Jun 05 2024

Keywords

Comments

There are various conventions for indexing Eulerian numbers. The one used here is described by the condition that for all polynomials p(n, 0) = 1. This applies equally to the classical Eulerian polynomials given by the coefficients A173018, as well as to the Eulerian zig-zag polynomials with coefficients in A205497 and to the polynomials here. See the illustration (link section).

Examples

			Triangle starts:
  [0] [1]
  [1] [1,  1]
  [2] [1,  2,   1]
  [3] [1,  4,   6,   4,   1]
  [4] [1,  7,  19,  26,  19,    7,   1]
  [5] [1, 12,  52, 116, 150,  116,  52,  12,   1]
  [6] [1, 20, 130, 430, 845, 1052, 845, 430, 130, 20, 1]
		

Crossrefs

Cf. A000831 (row sums), A007318 (Pascal), A205497 (zig-zag Eulerian).

Programs

  • Maple
    EZP := proc(P, len) local R, EZ, EP, EZP, CL, n;
    R := proc(n) option remember; local F; if n = 0 then 1/(1-q*x) else F := R(n-1);
    simplify(p/(p - q)*(subs({p = q, q = p}, F) - subs(p = q, F))) fi end:
    EZ := (n, x) -> ifelse(n < 3, 1, expand(simplify(subs({p = 1, q = 1}, R(n))*(1-x)^(n+1))/x^2)):
    EP := (n, x) -> local k; simplify(add(P(n, k)*x^k, k = 0..n)):
    EZP := (n, x) -> expand(EZ(n, x) * EP(n, x)):
    CL := p -> PolynomialTools:-CoefficientList(p, x);
    seq(CL(EZP(n, x)), n = 0..len); ListTools:-Flatten([%]) end:
    EZP(binomial, 8);

A373428 Triangle read by rows: Coefficients of the polynomials S2(n, x) * EZ(n, x), where S2 denote the Stirling set polynomials and EZ the Eulerian zig-zag polynomials A205497.

Original entry on oeis.org

1, 0, 1, 0, 1, 1, 0, 1, 4, 4, 1, 0, 1, 10, 28, 26, 9, 1, 0, 1, 22, 137, 291, 261, 102, 17, 1, 0, 1, 45, 555, 2300, 4150, 3517, 1479, 306, 29, 1, 0, 1, 89, 2048, 15152, 48942, 76259, 61846, 26976, 6388, 795, 47, 1
Offset: 0

Views

Author

Peter Luschny, Jun 06 2024

Keywords

Examples

			Tracing the computation:
0: [1] *          [1] =                   [1]
1: [1] *          [0, 1] =                [0, 1]
2: [1] *          [0, 1, 1] =             [0, 1, 1]
3: [1, 1] *       [0, 1, 3, 1] =          [0, 1, 4, 4, 1]
4: [1, 3, 1] *    [0, 1, 7, 6, 1] =       [0, 1, 10, 28, 26, 9, 1]
5: [1, 7, 7, 1] * [0, 1, 15, 25, 10, 1] = [0, 1, 22, 137, 291, 261, 102, 17, 1]
		

Crossrefs

Cf. A048993 (Stirling2), A205497 (zig-zag Eulerian), A320956 (row sums).

Programs

  • Maple
    EZP(Stirling2, 7);  # Using function EZP from A373432.

A373388 Alternating row sums of the Eulerian zig-zag number triangle A205497.

Original entry on oeis.org

1, -1, 1, 0, -1, 0, 5, 0, -45, 0, 665, 0, -14457, 0, 433741, 0, -17160421, 0, 865407905, 0, -54179057649, 0, 4122477869077, 0, -374673778941981, 0, 40087507726395689, 0, -4987405802167886825, 0, 713925031978621041757, 0, -116506260029721326349781, 0, 21501227314690679723073329
Offset: 0

Views

Author

Peter Luschny, Jun 03 2024

Keywords

Crossrefs

Programs

  • Maple
    # Using the recurrence by Kyle Petersen from A205497.
    G := proc(n) option remember; local F;
    if n = 0 then 1/(1 - q*x) else F := G(n - 1);
    simplify((p/(p - q))*(subs({p = q, q = p}, F) - subs(p = q, F))) fi end:
    A373388 := n -> subs({p = 1, q = 1, x = -1}, G(n)*(1 - x)^(n + 1)):
    seq(A373388(n), n = 0..20);
  • Mathematica
    G[n_] := G[n] = Module[{F}, If[n == 0, 1/(1-q*x), F = G[n-1]; Simplify[ (p/(p-q))*(ReplaceAll[F, {p -> q, q -> p}] - ReplaceAll[F, p -> q])]]]; a[n_] := a[n] = ReplaceAll[G[n]*(1-x)^(n+1), {p -> 1, q -> 1, x -> -1}]; Table[a[n], {n, 0, 34}] (* Jean-François Alcover, Jun 08 2024, after Maple program *)

A373389 The Eulerian zig-zag polynomials A205497 evaluated at x = -1/2 and normalized by (-2)^n.

Original entry on oeis.org

1, 1, 1, -1, -1, 7, 1, -103, 197, 2143, -11717, -50245, 700541, 445297, -46679363, 145710035, 3366506123, -28627646249, -232615347479, 4589590326917, 7797081908429, -722997025420733, 2790363142173367, 112843029882305495, -1235970846163474579, -16017081358111849247
Offset: 0

Views

Author

Peter Luschny, Jun 03 2024

Keywords

Crossrefs

Programs

  • Maple
    # Using the recurrence by Kyle Petersen from A205497.
    G := proc(n) option remember; local F;
    if n = 0 then 1/(1 - q*x) else F := G(n - 1);
    simplify((p/(p - q))*(subs({p = q, q = p}, F) - subs(p = q, F))) fi end:
     A373389 := n -> (-2)^n*subs({p = 1, q = 1, x = -1/2}, G(n)*(1 - x)^(n + 1)):
    seq(A373389(n), n = 0..22);
  • Mathematica
    G[n_] := G[n] = Module[{F}, If[n == 0, 1/(1-q*x), F = G[n-1]; Simplify[ (p/(p-q))*(ReplaceAll[F, {p -> q, q -> p}] - ReplaceAll[F, p -> q])]]];
    a[n_] := a[n] = (-2)^n*ReplaceAll[G[n]*(1-x)^(n+1), {p -> 1, q -> 1, x -> -1/2}];
    Table[Print[n, " ", a[n]]; a[n], {n, 0, 25}] (* Jean-François Alcover, Jun 08 2024, after Maple program *)

A373426 Triangle read by rows: Coefficients of the polynomials L(n, x) * EZ(n, x), where L denote the unsigned Lah polynomials and EZ the Eulerian zig-zag polynomials A205497.

Original entry on oeis.org

1, 0, 1, 0, 2, 1, 0, 6, 12, 7, 1, 0, 24, 108, 144, 73, 15, 1, 0, 120, 1080, 2640, 2660, 1221, 267, 27, 1, 0, 720, 11880, 48720, 82980, 67350, 28321, 6344, 751, 44, 1, 0, 5040, 146160, 955080, 2529240, 3262350, 2245782, 870283, 195074, 25267, 1831, 68, 1
Offset: 0

Views

Author

Peter Luschny, Jun 07 2024

Keywords

Examples

			Tracing the computation:
  0: [1] *       [1] =                [1]
  1: [1] *       [0,  1] =            [0,  1]
  2: [1] *       [0,  2,  1] =        [0,  2,   1]
  3: [1, 1] *    [0,  6,  6,  1] =    [0,  6,  12,   7,  1]
  4: [1, 3, 1] * [0, 24, 36, 12, 1] = [0, 24, 108, 144, 73, 15, 1]
		

Crossrefs

Cf. A271703 (Lah), A205497 (zig-zag Eulerian), A373425 (row sums).

Programs

  • Maple
    # Using function EZP from A373432.
    EZP((n, k) -> ifelse(n=k, 1, binomial(n-1, k-1)*n!/k!), 7);

A373429 Triangle read by rows: Coefficients of the polynomials S1(n, x) * EZ(n, x), where S1 denote the Stirling1 polynomials and EZ the Eulerian zig-zag polynomials A205497.

Original entry on oeis.org

1, 0, 1, 0, -1, 1, 0, 2, -1, -2, 1, 0, -6, -7, 21, -6, -3, 1, 0, 24, 118, -147, -91, 126, -28, -3, 1, 0, -120, -1406, -109, 3749, -2084, -450, 514, -94, -1, 1, 0, 720, 16956, 34240, -72307, -15475, 56286, -21125, -674, 1635, -262, 5, 1
Offset: 0

Views

Author

Peter Luschny, Jun 07 2024

Keywords

Examples

			Tracing the computation:
0: [1] *          [1] =                      [1]
1: [1] *          [0,  1] =                  [0,  1]
2: [1] *          [0, -1,  1] =              [0, -1,   1]
3: [1, 1] *       [0,  2,  -3,  1] =         [0,  2,  -1,   -2,   1]
4: [1, 3, 1] *    [0, -6,  11, -6,   1] =    [0, -6,  -7,   21,  -6,  -3,  1]
5: [1, 7, 7, 1] * [0, 24, -50, 35, -10, 1] = [0, 24, 118, -147, -91, 126,-28,-3,1]
		

Crossrefs

Cf. A048994 (Stirling1), A205497 (zig-zag Eulerian), A320956 (row sums).

Programs

  • Maple
    EZP(Stirling1, 7);  # Using function EZP from A373432.

A373431 Triangle read by rows: Coefficients of the polynomials N(n, x) * EZ(n, x), where N denote the Narayana polynomials A131198 and EZ the Eulerian zig-zag polynomials A205497.

Original entry on oeis.org

1, 1, 1, 1, 1, 4, 4, 1, 1, 9, 25, 25, 9, 1, 1, 17, 97, 221, 221, 97, 17, 1, 1, 29, 291, 1229, 2476, 2476, 1229, 291, 29, 1, 1, 47, 760, 5303, 18415, 33818, 33818, 18415, 5303, 760, 47, 1, 1, 74, 1818, 19481, 106272, 317902, 544727, 544727, 317902, 106272, 19481, 1818, 74, 1
Offset: 0

Views

Author

Peter Luschny, Jun 05 2024

Keywords

Comments

There are various conventions for indexing the Narayana, the Eulerian numbers and the zig-zag Eulerian numbers. The one we use here requires that all corresponding polynomials have p(n, 0) = 1.

Examples

			Triangle starts:
  [0] 1;
  [1] 1;
  [2] 1,  1;
  [3] 1,  4,   4,    1;
  [4] 1,  9,  25,   25,    9,    1;
  [5] 1, 17,  97,  221,  221,   97,   17,   1;
  [6] 1, 29, 291, 1229, 2476, 2476, 1229, 291, 29, 1;
		

Crossrefs

Cf. A131198 (Narayana), A205497 (Eulerian zig-zag), A373430 (row sums).

Programs

  • Maple
    R := proc(n) option remember; local F; if n = 0 then 1/(1 - q*x) else F := R(n-1);
    simplify(p/(p - q)*(subs({p = q, q = p}, F) - subs(p = q, F))) fi end:
    EZ := (n, x) -> ifelse(n < 3, 1, expand(simplify(subs({p = 1, q = 1}, R(n))*(1 - x)^(n + 1)) / x^2)):
    nc := (n, k) -> `if`(n = 0, 0^n, binomial(n, k)^2*(n-k)/(n*(k+1))):
    N := (n, x) -> local k; simplify(add(nc(n, k)*x^k, k = 0..n)):
    NEZ := (n, x) -> expand(EZ(n, x) * N(n, x)):
    Trow := n -> local k; if n < 2 then 1 elif n = 2 then 1, 1
    else seq(coeff(NEZ(n, x), x, k), k = 0..2*n-3) fi: seq(print(Trow(n)), n = 0..6);

A205493 Third row or column of table A205497.

Original entry on oeis.org

1, 14, 109, 623, 2951, 12331, 47191, 169416, 579889, 1914226, 6144668, 19298724, 59579803, 181448918, 546629054, 1632497850, 4841448042, 14277423006, 41912838982, 122587133760, 357476552161, 1039922075888, 3019280091491, 8752184436454, 25337900299765
Offset: 0

Views

Author

L. Edson Jeffery, Jan 28 2012

Keywords

Comments

See A205497 regarding association of this sequence with generating functions for the rows of the tabular form of A050446.

Crossrefs

Programs

Formula

Conjecture 1. a(n) = M_{n,3} = M_{3,n}, where M = A205497.
Conjecture 2. Let w=2*cos(Pi/9). Then lim_{n->oo} a(n+1)/a(n) = w^3-2*w = spectral radius of the 4 X 4 unit-primitive matrix (see [Jeffery]) A_{9,3} = [0,0,0,1; 0,0,1,1; 0,1,1,1; 1,1,1,1].

Extensions

a(24) and changed title from Hugo Pfoertner, Jan 05 2020

A205494 Conjectured row or column n=4 of array A205497.

Original entry on oeis.org

1, 26, 334, 2951, 20641, 123216, 656683, 3217526, 14786816, 64657546, 271838823, 1107586989, 4399926007, 17122243560, 65514790830, 247212893755, 922136438698, 3406871213836, 12486569116765, 45459575562313, 164578100859837, 593025025473647, 2128399709975819, 7613495897772440
Offset: 0

Views

Author

L. Edson Jeffery, Jan 28 2012

Keywords

Comments

The denominator of the generating function for this sequence is a polynomial of degree 35. Terms corresponding to n=0,...,23 are shown above, with those for n=24,...,40 as follows: {27157723973468595, 96643368020414337, 343226612286408932, 1216901732483780905, 4308339945395597755, 15234940157670046379, 53818220864065451564, 189952299613455045068, 669953408386151161398, 2361449534293944339096, 8319329987059336296021, 29296032314800671782284, 103126374236214419873734, 362907786820798388773987, 1276761054260676178577043, 4490840947292979020061377, 15793032895427304036405557}.
See A205497 regarding association of this sequence with generating functions for the rows of the tabular form of A050446.

Crossrefs

Formula

G.f.: (1+4*x-31*x^2 - 67*x^3 + 348*x^4 + 418*x^5 - 1893*x^6 - 1084*x^7 + 4326*x^8 + 4295*x^9 - 7680*x^10 - 9172*x^11 + 9104*x^12 + 11627*x^13 - 5483*x^14 - 10773*x^15 + 1108*x^16 + 7255*x^17 + 315*x^18 - 3085*x^19 - 228*x^20 + 669*x^21 + 102*x^22 - 23*x^23 - 45*x^24 - 16*x^25 + 11*x^26 + 2*x^27 - x^28) / ((1-x)^5 * (1-x-x^2)^4 * (1-2*x-x^2+x^3)^3 * (1-2*x-3*x^2+x^3+x^4)^2 * (1-3*x-3*x^2+4*x^3+x^4-x^5)).
CONJECTURE 1. a(n) = M_{n,4} = M_{4,n}, where M = A205497.
CONJECTURE 2. Let w=2*cos(Pi/11). Then lim_{n->oo} a(n+1)/a(n) = w^4-3*w^2+1 = spectral radius of the 5 X 5 unit-primitive matrix (see [Jeffery]) A_{11,4} = [0,0,0,0,1; 0,0,0,1,1; 0,0,1,1,1; 0,1,1,1,1; 1,1,1,1,1].

A373427 Triangle read by rows: Coefficients of the polynomials SC(n, x) * EZ(n, x), where SC denote the Stirling cycle polynomials and EZ the Eulerian zig-zag polynomials A205497.

Original entry on oeis.org

1, 0, 1, 0, 1, 1, 0, 2, 5, 4, 1, 0, 6, 29, 45, 30, 9, 1, 0, 24, 218, 553, 629, 366, 112, 17, 1, 0, 120, 1954, 7781, 13409, 12136, 6270, 1894, 326, 29, 1, 0, 720, 20484, 125968, 313715, 407297, 308286, 143725, 42124, 7683, 830, 47, 1
Offset: 0

Views

Author

Peter Luschny, Jun 07 2024

Keywords

Examples

			Tracing the computation:
0: [1] *          [1] =                    [1]
1: [1] *          [0,  1] =                [0,  1]
2: [1] *          [0,  1, 1] =             [0,  1,   1]
3: [1, 1] *       [0,  2, 3, 1] =          [0,  2,   5,   4,   1]
4: [1, 3, 1] *    [0,  6, 11, 6, 1] =      [0,  6,  29,  45,  30,   9,   1]
5: [1, 7, 7, 1] * [0, 24, 50, 35, 10, 1] = [0, 24, 218, 553, 629, 366, 112,17,1]
		

Crossrefs

Cf. A132393 (Stirling cycle), A205497 (zig-zag Eulerian), A373433 (row sums).

Programs

  • Maple
    EZP((n, k) -> abs(Stirling1(n, k)), 7);  # Using function EZP from A373432.
Showing 1-10 of 20 results. Next