A373432
Triangle read by rows. Coefficients of the polynomials P(n, x) * EZ(n, x), where P denote the Pascal polynomials and EZ the zig-zag Eulerian polynomials A205497.
Original entry on oeis.org
1, 1, 1, 1, 2, 1, 1, 4, 6, 4, 1, 1, 7, 19, 26, 19, 7, 1, 1, 12, 52, 116, 150, 116, 52, 12, 1, 1, 20, 130, 430, 845, 1052, 845, 430, 130, 20, 1, 1, 33, 312, 1453, 4023, 7218, 8736, 7218, 4023, 1453, 312, 33, 1, 1, 54, 730, 4639, 17316, 42142, 70593, 83610, 70593, 42142, 17316, 4639, 730, 54, 1
Offset: 0
Triangle starts:
[0] [1]
[1] [1, 1]
[2] [1, 2, 1]
[3] [1, 4, 6, 4, 1]
[4] [1, 7, 19, 26, 19, 7, 1]
[5] [1, 12, 52, 116, 150, 116, 52, 12, 1]
[6] [1, 20, 130, 430, 845, 1052, 845, 430, 130, 20, 1]
-
EZP := proc(P, len) local R, EZ, EP, EZP, CL, n;
R := proc(n) option remember; local F; if n = 0 then 1/(1-q*x) else F := R(n-1);
simplify(p/(p - q)*(subs({p = q, q = p}, F) - subs(p = q, F))) fi end:
EZ := (n, x) -> ifelse(n < 3, 1, expand(simplify(subs({p = 1, q = 1}, R(n))*(1-x)^(n+1))/x^2)):
EP := (n, x) -> local k; simplify(add(P(n, k)*x^k, k = 0..n)):
EZP := (n, x) -> expand(EZ(n, x) * EP(n, x)):
CL := p -> PolynomialTools:-CoefficientList(p, x);
seq(CL(EZP(n, x)), n = 0..len); ListTools:-Flatten([%]) end:
EZP(binomial, 8);
A373428
Triangle read by rows: Coefficients of the polynomials S2(n, x) * EZ(n, x), where S2 denote the Stirling set polynomials and EZ the Eulerian zig-zag polynomials A205497.
Original entry on oeis.org
1, 0, 1, 0, 1, 1, 0, 1, 4, 4, 1, 0, 1, 10, 28, 26, 9, 1, 0, 1, 22, 137, 291, 261, 102, 17, 1, 0, 1, 45, 555, 2300, 4150, 3517, 1479, 306, 29, 1, 0, 1, 89, 2048, 15152, 48942, 76259, 61846, 26976, 6388, 795, 47, 1
Offset: 0
Tracing the computation:
0: [1] * [1] = [1]
1: [1] * [0, 1] = [0, 1]
2: [1] * [0, 1, 1] = [0, 1, 1]
3: [1, 1] * [0, 1, 3, 1] = [0, 1, 4, 4, 1]
4: [1, 3, 1] * [0, 1, 7, 6, 1] = [0, 1, 10, 28, 26, 9, 1]
5: [1, 7, 7, 1] * [0, 1, 15, 25, 10, 1] = [0, 1, 22, 137, 291, 261, 102, 17, 1]
A373388
Alternating row sums of the Eulerian zig-zag number triangle A205497.
Original entry on oeis.org
1, -1, 1, 0, -1, 0, 5, 0, -45, 0, 665, 0, -14457, 0, 433741, 0, -17160421, 0, 865407905, 0, -54179057649, 0, 4122477869077, 0, -374673778941981, 0, 40087507726395689, 0, -4987405802167886825, 0, 713925031978621041757, 0, -116506260029721326349781, 0, 21501227314690679723073329
Offset: 0
-
# Using the recurrence by Kyle Petersen from A205497.
G := proc(n) option remember; local F;
if n = 0 then 1/(1 - q*x) else F := G(n - 1);
simplify((p/(p - q))*(subs({p = q, q = p}, F) - subs(p = q, F))) fi end:
A373388 := n -> subs({p = 1, q = 1, x = -1}, G(n)*(1 - x)^(n + 1)):
seq(A373388(n), n = 0..20);
-
G[n_] := G[n] = Module[{F}, If[n == 0, 1/(1-q*x), F = G[n-1]; Simplify[ (p/(p-q))*(ReplaceAll[F, {p -> q, q -> p}] - ReplaceAll[F, p -> q])]]]; a[n_] := a[n] = ReplaceAll[G[n]*(1-x)^(n+1), {p -> 1, q -> 1, x -> -1}]; Table[a[n], {n, 0, 34}] (* Jean-François Alcover, Jun 08 2024, after Maple program *)
A373389
The Eulerian zig-zag polynomials A205497 evaluated at x = -1/2 and normalized by (-2)^n.
Original entry on oeis.org
1, 1, 1, -1, -1, 7, 1, -103, 197, 2143, -11717, -50245, 700541, 445297, -46679363, 145710035, 3366506123, -28627646249, -232615347479, 4589590326917, 7797081908429, -722997025420733, 2790363142173367, 112843029882305495, -1235970846163474579, -16017081358111849247
Offset: 0
-
# Using the recurrence by Kyle Petersen from A205497.
G := proc(n) option remember; local F;
if n = 0 then 1/(1 - q*x) else F := G(n - 1);
simplify((p/(p - q))*(subs({p = q, q = p}, F) - subs(p = q, F))) fi end:
A373389 := n -> (-2)^n*subs({p = 1, q = 1, x = -1/2}, G(n)*(1 - x)^(n + 1)):
seq(A373389(n), n = 0..22);
-
G[n_] := G[n] = Module[{F}, If[n == 0, 1/(1-q*x), F = G[n-1]; Simplify[ (p/(p-q))*(ReplaceAll[F, {p -> q, q -> p}] - ReplaceAll[F, p -> q])]]];
a[n_] := a[n] = (-2)^n*ReplaceAll[G[n]*(1-x)^(n+1), {p -> 1, q -> 1, x -> -1/2}];
Table[Print[n, " ", a[n]]; a[n], {n, 0, 25}] (* Jean-François Alcover, Jun 08 2024, after Maple program *)
A373426
Triangle read by rows: Coefficients of the polynomials L(n, x) * EZ(n, x), where L denote the unsigned Lah polynomials and EZ the Eulerian zig-zag polynomials A205497.
Original entry on oeis.org
1, 0, 1, 0, 2, 1, 0, 6, 12, 7, 1, 0, 24, 108, 144, 73, 15, 1, 0, 120, 1080, 2640, 2660, 1221, 267, 27, 1, 0, 720, 11880, 48720, 82980, 67350, 28321, 6344, 751, 44, 1, 0, 5040, 146160, 955080, 2529240, 3262350, 2245782, 870283, 195074, 25267, 1831, 68, 1
Offset: 0
Tracing the computation:
0: [1] * [1] = [1]
1: [1] * [0, 1] = [0, 1]
2: [1] * [0, 2, 1] = [0, 2, 1]
3: [1, 1] * [0, 6, 6, 1] = [0, 6, 12, 7, 1]
4: [1, 3, 1] * [0, 24, 36, 12, 1] = [0, 24, 108, 144, 73, 15, 1]
-
# Using function EZP from A373432.
EZP((n, k) -> ifelse(n=k, 1, binomial(n-1, k-1)*n!/k!), 7);
A373429
Triangle read by rows: Coefficients of the polynomials S1(n, x) * EZ(n, x), where S1 denote the Stirling1 polynomials and EZ the Eulerian zig-zag polynomials A205497.
Original entry on oeis.org
1, 0, 1, 0, -1, 1, 0, 2, -1, -2, 1, 0, -6, -7, 21, -6, -3, 1, 0, 24, 118, -147, -91, 126, -28, -3, 1, 0, -120, -1406, -109, 3749, -2084, -450, 514, -94, -1, 1, 0, 720, 16956, 34240, -72307, -15475, 56286, -21125, -674, 1635, -262, 5, 1
Offset: 0
Tracing the computation:
0: [1] * [1] = [1]
1: [1] * [0, 1] = [0, 1]
2: [1] * [0, -1, 1] = [0, -1, 1]
3: [1, 1] * [0, 2, -3, 1] = [0, 2, -1, -2, 1]
4: [1, 3, 1] * [0, -6, 11, -6, 1] = [0, -6, -7, 21, -6, -3, 1]
5: [1, 7, 7, 1] * [0, 24, -50, 35, -10, 1] = [0, 24, 118, -147, -91, 126,-28,-3,1]
A373431
Triangle read by rows: Coefficients of the polynomials N(n, x) * EZ(n, x), where N denote the Narayana polynomials A131198 and EZ the Eulerian zig-zag polynomials A205497.
Original entry on oeis.org
1, 1, 1, 1, 1, 4, 4, 1, 1, 9, 25, 25, 9, 1, 1, 17, 97, 221, 221, 97, 17, 1, 1, 29, 291, 1229, 2476, 2476, 1229, 291, 29, 1, 1, 47, 760, 5303, 18415, 33818, 33818, 18415, 5303, 760, 47, 1, 1, 74, 1818, 19481, 106272, 317902, 544727, 544727, 317902, 106272, 19481, 1818, 74, 1
Offset: 0
Triangle starts:
[0] 1;
[1] 1;
[2] 1, 1;
[3] 1, 4, 4, 1;
[4] 1, 9, 25, 25, 9, 1;
[5] 1, 17, 97, 221, 221, 97, 17, 1;
[6] 1, 29, 291, 1229, 2476, 2476, 1229, 291, 29, 1;
-
R := proc(n) option remember; local F; if n = 0 then 1/(1 - q*x) else F := R(n-1);
simplify(p/(p - q)*(subs({p = q, q = p}, F) - subs(p = q, F))) fi end:
EZ := (n, x) -> ifelse(n < 3, 1, expand(simplify(subs({p = 1, q = 1}, R(n))*(1 - x)^(n + 1)) / x^2)):
nc := (n, k) -> `if`(n = 0, 0^n, binomial(n, k)^2*(n-k)/(n*(k+1))):
N := (n, x) -> local k; simplify(add(nc(n, k)*x^k, k = 0..n)):
NEZ := (n, x) -> expand(EZ(n, x) * N(n, x)):
Trow := n -> local k; if n < 2 then 1 elif n = 2 then 1, 1
else seq(coeff(NEZ(n, x), x, k), k = 0..2*n-3) fi: seq(print(Trow(n)), n = 0..6);
A205493
Third row or column of table A205497.
Original entry on oeis.org
1, 14, 109, 623, 2951, 12331, 47191, 169416, 579889, 1914226, 6144668, 19298724, 59579803, 181448918, 546629054, 1632497850, 4841448042, 14277423006, 41912838982, 122587133760, 357476552161, 1039922075888, 3019280091491, 8752184436454, 25337900299765
Offset: 0
A205494
Conjectured row or column n=4 of array A205497.
Original entry on oeis.org
1, 26, 334, 2951, 20641, 123216, 656683, 3217526, 14786816, 64657546, 271838823, 1107586989, 4399926007, 17122243560, 65514790830, 247212893755, 922136438698, 3406871213836, 12486569116765, 45459575562313, 164578100859837, 593025025473647, 2128399709975819, 7613495897772440
Offset: 0
A373427
Triangle read by rows: Coefficients of the polynomials SC(n, x) * EZ(n, x), where SC denote the Stirling cycle polynomials and EZ the Eulerian zig-zag polynomials A205497.
Original entry on oeis.org
1, 0, 1, 0, 1, 1, 0, 2, 5, 4, 1, 0, 6, 29, 45, 30, 9, 1, 0, 24, 218, 553, 629, 366, 112, 17, 1, 0, 120, 1954, 7781, 13409, 12136, 6270, 1894, 326, 29, 1, 0, 720, 20484, 125968, 313715, 407297, 308286, 143725, 42124, 7683, 830, 47, 1
Offset: 0
Tracing the computation:
0: [1] * [1] = [1]
1: [1] * [0, 1] = [0, 1]
2: [1] * [0, 1, 1] = [0, 1, 1]
3: [1, 1] * [0, 2, 3, 1] = [0, 2, 5, 4, 1]
4: [1, 3, 1] * [0, 6, 11, 6, 1] = [0, 6, 29, 45, 30, 9, 1]
5: [1, 7, 7, 1] * [0, 24, 50, 35, 10, 1] = [0, 24, 218, 553, 629, 366, 112,17,1]
Showing 1-10 of 20 results.
Comments