cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-5 of 5 results.

A373428 Triangle read by rows: Coefficients of the polynomials S2(n, x) * EZ(n, x), where S2 denote the Stirling set polynomials and EZ the Eulerian zig-zag polynomials A205497.

Original entry on oeis.org

1, 0, 1, 0, 1, 1, 0, 1, 4, 4, 1, 0, 1, 10, 28, 26, 9, 1, 0, 1, 22, 137, 291, 261, 102, 17, 1, 0, 1, 45, 555, 2300, 4150, 3517, 1479, 306, 29, 1, 0, 1, 89, 2048, 15152, 48942, 76259, 61846, 26976, 6388, 795, 47, 1
Offset: 0

Views

Author

Peter Luschny, Jun 06 2024

Keywords

Examples

			Tracing the computation:
0: [1] *          [1] =                   [1]
1: [1] *          [0, 1] =                [0, 1]
2: [1] *          [0, 1, 1] =             [0, 1, 1]
3: [1, 1] *       [0, 1, 3, 1] =          [0, 1, 4, 4, 1]
4: [1, 3, 1] *    [0, 1, 7, 6, 1] =       [0, 1, 10, 28, 26, 9, 1]
5: [1, 7, 7, 1] * [0, 1, 15, 25, 10, 1] = [0, 1, 22, 137, 291, 261, 102, 17, 1]
		

Crossrefs

Cf. A048993 (Stirling2), A205497 (zig-zag Eulerian), A320956 (row sums).

Programs

  • Maple
    EZP(Stirling2, 7);  # Using function EZP from A373432.

A373426 Triangle read by rows: Coefficients of the polynomials L(n, x) * EZ(n, x), where L denote the unsigned Lah polynomials and EZ the Eulerian zig-zag polynomials A205497.

Original entry on oeis.org

1, 0, 1, 0, 2, 1, 0, 6, 12, 7, 1, 0, 24, 108, 144, 73, 15, 1, 0, 120, 1080, 2640, 2660, 1221, 267, 27, 1, 0, 720, 11880, 48720, 82980, 67350, 28321, 6344, 751, 44, 1, 0, 5040, 146160, 955080, 2529240, 3262350, 2245782, 870283, 195074, 25267, 1831, 68, 1
Offset: 0

Views

Author

Peter Luschny, Jun 07 2024

Keywords

Examples

			Tracing the computation:
  0: [1] *       [1] =                [1]
  1: [1] *       [0,  1] =            [0,  1]
  2: [1] *       [0,  2,  1] =        [0,  2,   1]
  3: [1, 1] *    [0,  6,  6,  1] =    [0,  6,  12,   7,  1]
  4: [1, 3, 1] * [0, 24, 36, 12, 1] = [0, 24, 108, 144, 73, 15, 1]
		

Crossrefs

Cf. A271703 (Lah), A205497 (zig-zag Eulerian), A373425 (row sums).

Programs

  • Maple
    # Using function EZP from A373432.
    EZP((n, k) -> ifelse(n=k, 1, binomial(n-1, k-1)*n!/k!), 7);

A373429 Triangle read by rows: Coefficients of the polynomials S1(n, x) * EZ(n, x), where S1 denote the Stirling1 polynomials and EZ the Eulerian zig-zag polynomials A205497.

Original entry on oeis.org

1, 0, 1, 0, -1, 1, 0, 2, -1, -2, 1, 0, -6, -7, 21, -6, -3, 1, 0, 24, 118, -147, -91, 126, -28, -3, 1, 0, -120, -1406, -109, 3749, -2084, -450, 514, -94, -1, 1, 0, 720, 16956, 34240, -72307, -15475, 56286, -21125, -674, 1635, -262, 5, 1
Offset: 0

Views

Author

Peter Luschny, Jun 07 2024

Keywords

Examples

			Tracing the computation:
0: [1] *          [1] =                      [1]
1: [1] *          [0,  1] =                  [0,  1]
2: [1] *          [0, -1,  1] =              [0, -1,   1]
3: [1, 1] *       [0,  2,  -3,  1] =         [0,  2,  -1,   -2,   1]
4: [1, 3, 1] *    [0, -6,  11, -6,   1] =    [0, -6,  -7,   21,  -6,  -3,  1]
5: [1, 7, 7, 1] * [0, 24, -50, 35, -10, 1] = [0, 24, 118, -147, -91, 126,-28,-3,1]
		

Crossrefs

Cf. A048994 (Stirling1), A205497 (zig-zag Eulerian), A320956 (row sums).

Programs

  • Maple
    EZP(Stirling1, 7);  # Using function EZP from A373432.

A373427 Triangle read by rows: Coefficients of the polynomials SC(n, x) * EZ(n, x), where SC denote the Stirling cycle polynomials and EZ the Eulerian zig-zag polynomials A205497.

Original entry on oeis.org

1, 0, 1, 0, 1, 1, 0, 2, 5, 4, 1, 0, 6, 29, 45, 30, 9, 1, 0, 24, 218, 553, 629, 366, 112, 17, 1, 0, 120, 1954, 7781, 13409, 12136, 6270, 1894, 326, 29, 1, 0, 720, 20484, 125968, 313715, 407297, 308286, 143725, 42124, 7683, 830, 47, 1
Offset: 0

Views

Author

Peter Luschny, Jun 07 2024

Keywords

Examples

			Tracing the computation:
0: [1] *          [1] =                    [1]
1: [1] *          [0,  1] =                [0,  1]
2: [1] *          [0,  1, 1] =             [0,  1,   1]
3: [1, 1] *       [0,  2, 3, 1] =          [0,  2,   5,   4,   1]
4: [1, 3, 1] *    [0,  6, 11, 6, 1] =      [0,  6,  29,  45,  30,   9,   1]
5: [1, 7, 7, 1] * [0, 24, 50, 35, 10, 1] = [0, 24, 218, 553, 629, 366, 112,17,1]
		

Crossrefs

Cf. A132393 (Stirling cycle), A205497 (zig-zag Eulerian), A373433 (row sums).

Programs

  • Maple
    EZP((n, k) -> abs(Stirling1(n, k)), 7);  # Using function EZP from A373432.

A373572 Triangle read by rows: Coefficients of the polynomials P(n, x) * EZ(n, x), where P denote the signed Pascal polynomials and EZ the Eulerian zig-zag polynomials A205497.

Original entry on oeis.org

1, -1, 1, 1, -2, 1, -1, 2, 0, -2, 1, 1, -1, -5, 10, -5, -1, 1, -1, -2, 18, -26, 0, 26, -18, 2, 1, 1, 8, -38, 18, 117, -212, 117, 18, -38, 8, 1, -1, -19, 52, 143, -677, 818, 0, -818, 677, -143, -52, 19, 1, 1, 38, -6, -817, 2196, -722, -5071, 8762, -5071, -722, 2196, -817, -6, 38, 1
Offset: 0

Views

Author

Peter Luschny, Jun 15 2024

Keywords

Examples

			Triangle starts:
  [0] [1]
  [1] [-1,   1]
  [2] [ 1,  -2,   1]
  [3] [-1,   2,   0,  -2,    1]
  [4] [ 1,  -1,  -5,  10,   -5,   -1,   1]
  [5] [-1,  -2,  18, -26,    0,   26, -18,    2,   1]
  [6] [ 1,   8, -38,  18,  117, -212, 117,   18, -38,    8,   1]
  [7] [-1, -19,  52, 143, -677,  818,   0, -818, 677, -143, -52, 19, 1]
		

Crossrefs

Cf. A373432, A205497, A373657, A000007 (row sums).

Programs

  • Maple
    EZP((n, k) -> (-1)^(n-k)*binomial(n, k), 8);  # Using function EZP from A373432.
Showing 1-5 of 5 results.