cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

User: Rolf Pleisch

Rolf Pleisch's wiki page.

Rolf Pleisch has authored 31 sequences. Here are the ten most recent ones:

A190869 a(n) = 10*a(n-1) - 2*a(n-2), a(0)=0, a(1)=1.

Original entry on oeis.org

0, 1, 10, 98, 960, 9404, 92120, 902392, 8839680, 86592016, 848240800, 8309223968, 81395758080, 797339132864, 7810599812480, 76511319859072, 749491998965760, 7341897349939456, 71919989501463040, 704516100314751488, 6901321024144588800, 67604178040816385024
Offset: 0

Author

Rolf Pleisch, May 22 2011

Keywords

Comments

a(n+1) equals the number of words of length n over {0,1,2,3,4,5,6,7,8,9} avoiding 01 and 02. - Milan Janjic, Dec 17 2015

Programs

  • Magma
    I:=[0,1]; [n le 2 select I[n] else 10*Self(n-1)-2*Self(n-2): n in [1..30]]; // Vincenzo Librandi, Dec 17 2015
    
  • Maple
    f:= gfun:-rectoproc({a(n) = 10*a(n-1) - 2*a(n-2), a(0)=0, a(1)=1},a(n),remember):
    map(f, [$0..50]); # Robert Israel, Dec 17 2015
  • Mathematica
    LinearRecurrence[{10, -2}, {0, 1}, 50] (* T. D. Noe, May 23 2011 *)
  • PARI
    concat(0, Vec(x/(1-10*x+2*x^2) + O(x^100))) \\ Altug Alkan, Dec 17 2015

Formula

a(n) = ((5+sqrt(23))^n-(5-sqrt(23))^n)/(2*sqrt(23)).
G.f.: x/(1-10*x+2*x^2). - Robert Israel, Dec 17 2015

Extensions

Corrected and extended by T. D. Noe, May 23 2011

A190870 a(n) = 11*a(n-1) - 22*a(n-2), a(0)=0, a(1)=1.

Original entry on oeis.org

0, 1, 11, 99, 847, 7139, 59895, 501787, 4201967, 35182323, 294562279, 2466173963, 20647543455, 172867150819, 1447292702999, 12117142414971, 101448127098703, 849352264956371, 7111016118348615, 59535427472794603, 498447347597071103, 4173141419166300867
Offset: 0

Author

Rolf Pleisch, May 22 2011

Keywords

Crossrefs

Programs

  • Mathematica
    LinearRecurrence[{11, -22}, {0, 1}, 50] (* T. D. Noe, May 23 2011 *)
  • PARI
    concat(0, Vec(x/(1-11*x+22*x^2) + O(x^100))) \\ Altug Alkan, Dec 18 2015

Formula

a(n) = ((11+sqrt(33))^n-(11-sqrt(33))^n)/(2^n*sqrt(33)).
E.g.f.: (2/sqrt(33))*exp(11*x/2)*sinh(sqrt(33)*x/2). - G. C. Greubel, Dec 18 2015
G.f.: x/(1-11*x+22*x^2). - G. C. Greubel, Dec 18 2015

Extensions

Extended by T. D. Noe, May 23 2011

A190873 a(n) = 12*a(n-1) - 12*a(n-2), a(0)=0, a(1)=1.

Original entry on oeis.org

0, 1, 12, 132, 1440, 15696, 171072, 1864512, 20321280, 221481216, 2413919232, 26309256192, 286744043520, 3125217447936, 34061680852992, 371237560860672, 4046110560092160, 44098475990777856, 480628385168228352, 5238358910129405952, 57092766299534131200
Offset: 0

Author

Rolf Pleisch, May 22 2011

Keywords

Crossrefs

Programs

  • Magma
    [n le 2 select n-1 else 12*(Self(n-1) - Self(n-2)): n in [1..31]]; // G. C. Greubel, Sep 11 2023
    
  • Mathematica
    LinearRecurrence[{12,-12}, {0,1}, 50] (* T. D. Noe, May 23 2011 *)
  • PARI
    concat(0, Vec(x/(1-12*x+12*x^2) + O(x^100))) \\ Altug Alkan, Dec 18 2015
    
  • SageMath
    def A190873(n): return (2*sqrt(3))^(n-1)*chebyshev_U(n-1, sqrt(3))
    [A190873(n) for n in range(31)] # G. C. Greubel, Sep 11 2023

Formula

a(n) = 2^(n-2)*((3+sqrt(6))^n - (3-sqrt(6))^n)/sqrt(6).
G.f.: x/(1 - 12*x + 12*x^2). - Philippe Deléham, Dec 21 2011
E.g.f.: (1/(2*sqrt(6)))*exp(6*x)*sinh(2*sqrt(6)*x). - G. C. Greubel, Dec 18 2015
a(n) = (2*sqrt(3))^(n-1)*chebyshev_U(n-1, sqrt(3)). - G. C. Greubel, Sep 11 2023

Extensions

Extended by T. D. Noe, May 23 2011

A190872 a(n) = 11*a(n-1) - 9*a(n-2), a(0)=0, a(1)=1.

Original entry on oeis.org

0, 1, 11, 112, 1133, 11455, 115808, 1170793, 11836451, 119663824, 1209774005, 12230539639, 123647969984, 1250052813073, 12637749213947, 127764766035760, 1291672683467837, 13058516623824367, 132018628710857504, 1334678266205013241, 13493293269857428115
Offset: 0

Author

Rolf Pleisch, May 22 2011

Keywords

Comments

a(k) is Heuberger and Wagner's G_k at lemma 6.2 (2). They show (theorem 3.3 (1)) that the largest number of maximum matchings in a tree of 7k+1 vertices is a(k+1) and there is a unique free tree with this many maximum matchings. (See A333347 for all tree sizes.) - Kevin Ryde, Apr 11 2020

Crossrefs

Cf. A333345 (growth power), A190871, A190873.

Programs

  • Magma
    I:=[0,1]; [n le 2 select I[n] else 11*Self(n-1)-9*Self(n-2): n in [1..30]]; // Vincenzo Librandi, Dec 19 2015
  • Mathematica
    LinearRecurrence[{11, -9}, {0, 1}, 50] (* T. D. Noe, May 23 2011 *)
  • PARI
    concat(0, Vec(x/(1-11*x+9*x^2) + O(x^100))) \\ Altug Alkan, Dec 18 2015
    
  • PARI
    a(n) = polcoeff(lift(Mod('x,'x^2-11*'x+9)^n), 1); \\ Kevin Ryde, Apr 11 2020
    

Formula

a(n) = ((11+sqrt(85))^n-(11-sqrt(85))^n)/(2^n*sqrt(85)).
G.f.: x/(1-11*x+9*x^2). - Philippe Deléham, Feb 12 2012
E.g.f.: (2/sqrt(85))*exp(11*x/2)*sinh(sqrt(85)*x/2). - G. C. Greubel, Dec 18 2015
a(n) = (L^n - H^n)/(L-H) where L = (11+sqrt(85))/2 and H = (11-sqrt(85))/2. [Heuberger and Wagner lemma 6.2 (2)] - Kevin Ryde, Apr 11 2020

Extensions

Extended by T. D. Noe, May 23 2011

A190871 a(n) = 11*a(n-1) - 11*a(n-2), a(0)=0, a(1)=1.

Original entry on oeis.org

0, 1, 11, 110, 1089, 10769, 106480, 1052821, 10409751, 102926230, 1017681269, 10062305429, 99490865760, 983714163641, 9726456276691, 96170163243550, 950880776635449, 9401816747310889, 92960295677429840, 919143268231308461, 9088012698092664831
Offset: 0

Author

Rolf Pleisch, May 22 2011

Keywords

Crossrefs

Programs

  • Magma
    [n le 2 select n-1 else 11*(Self(n-1) - Self(n-2)): n in [1..31]]; // G. C. Greubel, Sep 11 2023
    
  • Mathematica
    LinearRecurrence[{11,-11}, {0,1}, 50] (* T. D. Noe, May 23 2011 *)
  • PARI
    concat(0, Vec(x/(1-11*x+11*x^2) + O(x^100))) \\ Altug Alkan, Dec 18 2015
    
  • SageMath
    def A190871(n): return (sqrt(11))^(n-1)*chebyshev_U(n-1, sqrt(11)/2)
    [A190871(n) for n in range(31)] # G. C. Greubel, Sep 11 2023

Formula

a(n) = ((11+sqrt(77))^n-(11-sqrt(77))^n)/(2^n*sqrt(77)).
G.f.: x/(1-11x+11x^2). - Philippe Deléham, Dec 21 2011
E.g.f.: (2/sqrt(77))*exp(11*x/2)*sinh(sqrt(77)*x/2). - G. C. Greubel, Dec 18 2015
a(n) = (sqrt(11))^(n-1)*chebyshev_U(n-1, sqrt(11)/2). - G. C. Greubel, Sep 11 2023

Extensions

Extended by T. D. Noe, May 23 2011

A164044 a(n+1) = 4*a(n) - n.

Original entry on oeis.org

1, 3, 10, 37, 144, 571, 2278, 9105, 36412, 145639, 582546, 2330173, 9320680, 37282707, 149130814, 596523241, 2386092948, 9544371775, 38177487082, 152709948309, 610839793216, 2443359172843, 9773436691350, 39093746765377
Offset: 0

Author

Rolf Pleisch, Aug 08 2009

Keywords

Programs

  • Mathematica
    Table[(5*4^n + 3*n + 4)/9, {n,0,50}] (* G. C. Greubel, Sep 08 2017 *)
  • PARI
    x='x+O('x^50); Vec((1-3*x+x^2)/((1-4*x)*(1-x)^2)) \\ G. C. Greubel, Sep 08 2017

Formula

a(0)=1; a(n+1) = 4*a(n) - n.
a(n) = (5*4^n + 3*n + 4)/9.
From R. J. Mathar, Aug 09 2009: (Start)
a(n) = 6*a(n-1) - 9*a(n-2) + 4*a(n-3).
G.f.: (1-3*x+x^2)/((1-4*x)*(1-x)^2). (End)
E.g.f.: (1/9)*(5*exp(4*x) + (3*x + 4)*exp(x)). - G. C. Greubel, Sep 08 2017

A164039 a(n+1) = 3*a(n) - n.

Original entry on oeis.org

1, 2, 4, 9, 23, 64, 186, 551, 1645, 4926, 14768, 44293, 132867, 398588, 1195750, 3587235, 10761689, 32285050, 96855132, 290565377, 871696111, 2615088312, 7845264914, 23535794719, 70607384133, 211822152374, 635466457096
Offset: 0

Author

Rolf Pleisch, Aug 08 2009

Keywords

Programs

  • Mathematica
    Transpose[NestList[Flatten[{Rest[#],ListCorrelate[#,{3,-7,5}]}]&, {1,2,4},30]][[1]] (* Harvey P. Dale, Mar 24 2011 *)
    Table[(3^n + 2*n + 3)/4, {n,0,50}] (* G. C. Greubel, Sep 08 2017 *)
  • PARI
    x='x+O('x^50); Vec((1-3*x+x^2)/((1-3*x)*(1-x)^2)) \\ G. C. Greubel, Sep 08 2017

Formula

a(0) = 1; a(n+1) = 3*a(n) - n.
a(n) = (3^n + 2*n + 3)/4.
From R. J. Mathar, Aug 09 2009: (Start)
a(n) = 5*a(n-1)-7*a(n-2)+3*a(n-3).
G.f.: (1-3*x+x^2)/((1-3*x)*(1-x)^2). (End)
E.g.f.: (1/4)*((2*x + 3)*exp(x) + exp(3*x)). - G. C. Greubel, Sep 08 2017

A164045 a(n+1) = 5*a(n) - n.

Original entry on oeis.org

1, 4, 18, 87, 431, 2150, 10744, 53713, 268557, 1342776, 6713870, 33569339, 167846683, 839233402, 4196166996, 20980834965, 104904174809, 524520874028, 2622604370122, 13113021850591, 65565109252935, 327825546264654
Offset: 0

Author

Rolf Pleisch, Aug 08 2009

Keywords

Programs

  • Mathematica
    Table[(11*5^n + 4*n + 5)/16, {n,0,50}] (* G. C. Greubel, Sep 08 2017 *)
    LinearRecurrence[{7,-11,5},{1,4,18},30] (* or *) nxt[{n_,a_}]:={n+1,5a-n-1}; NestList[nxt,{0,1},30][[;;,2]] (* Harvey P. Dale, Sep 29 2023 *)
  • PARI
    a(n) = (11*5^n + 4*n + 5)/16 \\ Michel Marcus, Jul 18 2013

Formula

a(0)=1; a(n+1) = 5*a(n) - n.
a(n) = (11*5^n + 4*n + 5)/16.
From R. J. Mathar, Aug 09 2009: (Start)
a(n) = 7*a(n-1) - 11*a(n-2) + 5*a(n-3).
G.f.: (1-3*x+x^2)/((1-5*x)*(1-x)^2). (End)
E.g.f.: (1/16)*(11*exp(5*x) + (4*x + 5)*exp(x)). - G. C. Greubel, Sep 08 2017

A140479 n^2 - number of digits of n^2.

Original entry on oeis.org

0, 0, 3, 8, 14, 23, 34, 47, 62, 79, 97, 118, 141, 166, 193, 222, 253, 286, 321, 358, 397, 438, 481, 526, 573, 622, 673, 726, 781, 838, 897, 958, 1020, 1085, 1152, 1221, 1292, 1365, 1440, 1517, 1596, 1677, 1760, 1845, 1932, 2021, 2112, 2205, 2300, 2397, 2496, 2597
Offset: 0

Author

Rolf Pleisch, Jun 29 2008

Keywords

Programs

  • PARI
    a(n) = n^2 - length(digits(n^2)) \\ Michel Marcus, Jul 18 2013

Formula

a(n) = A000290(n) - A055642(A000290(n)). Michel Marcus, Jul 18 2013

Extensions

Corrected and extended by N. J. A. Sloane, Jun 29 2008

A139817 2^n - number of digits of 2^n.

Original entry on oeis.org

0, 1, 3, 7, 14, 30, 62, 125, 253, 509, 1020, 2044, 4092, 8188, 16379, 32763, 65531, 131066, 262138, 524282, 1048569, 2097145, 4194297, 8388601, 16777208, 33554424, 67108856, 134217719, 268435447, 536870903, 1073741814, 2147483638, 4294967286, 8589934582
Offset: 0

Author

Rolf Pleisch, May 23 2008

Keywords

Crossrefs

Programs

  • Mathematica
    Table[2^n-IntegerLength[2^n],{n,0,40}] (* Harvey P. Dale, Apr 05 2015 *)
  • PARI
    a(n) = 2^n - length(digits(2^n)) \\ Michel Marcus, Jul 18 2013

Formula

a(n) = A000079(n) - A055642(A000079(n)). - Michel Marcus, Jul 18 2013

Extensions

More terms from N. J. A. Sloane, Jun 29 2008