cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 10 results.

A053538 Triangle: a(n,m) = ways to place p balls in n slots with m in the rightmost p slots, 0<=p<=n, 0<=m<=n, summed over p, a(n,m)= Sum_{k=0..n} binomial(k,m)*binomial(n-k,k-m), (see program line).

Original entry on oeis.org

1, 1, 1, 2, 1, 1, 3, 3, 1, 1, 5, 5, 4, 1, 1, 8, 10, 7, 5, 1, 1, 13, 18, 16, 9, 6, 1, 1, 21, 33, 31, 23, 11, 7, 1, 1, 34, 59, 62, 47, 31, 13, 8, 1, 1, 55, 105, 119, 101, 66, 40, 15, 9, 1, 1, 89, 185, 227, 205, 151, 88, 50, 17, 10, 1, 1, 144, 324, 426, 414, 321, 213, 113, 61, 19, 11, 1, 1
Offset: 0

Views

Author

Wouter Meeussen, May 23 2001

Keywords

Comments

Riordan array (1/(1-x-x^2), x(1-x)/(1-x-x^2)). Row sums are A000079. Diagonal sums are A006053(n+2). - Paul Barry, Nov 01 2006
Subtriangle of the triangle given by (0, 1, 1, -1, 0, 0, 0, 0, 0, 0, 0, ...) DELTA (1, 0, -1, 1, 0, 0, 0, 0, 0, 0, 0, ...) where DELTA is the operator defined in A084938. - Philippe Deléham, Mar 05 2012
Mirror image of triangle in A208342. - Philippe Deléham, Mar 05 2012
A053538 is jointly generated with A076791 as an array of coefficients of polynomials u(n,x): initially, u(1,x)=v(1,x)=1, for n>1, u(n,x) = x*u(n-1,x) + v(n-1,x) and v(n,x) = u(n-1,x) + v(n-1,x). See the Mathematica section at A076791. - Clark Kimberling, Mar 08 2012
The matrix inverse starts
1;
-1, 1;
-1, -1, 1;
1, -2, -1, 1;
3, 1, -3, -1, 1;
1, 6, 1, -4, -1, 1;
-7, 4, 10, 1, -5, -1, 1;
-13, -13, 8, 15, 1, -6, -1, 1;
3, -31, -23, 13, 21, 1, -7, -1, 1; - R. J. Mathar, Mar 15 2013
Also appears to be the number of subsets of {1..n} containing n with k maximal anti-runs of consecutive elements increasing by more than 1. For example, the subset {1,3,6,7,11,12} has maximal anti-runs ((1,3,6),(7,11),(12)) so is counted under a(12,3). For runs instead of anti-runs we get A202064. - Gus Wiseman, Jun 26 2025

Examples

			n=4; Table[binomial[k, j]binomial[n-k, k-j], {k, 0, n}, {j, 0, n}] splits {1, 4, 6, 4, 1} into {{1, 0, 0, 0, 0}, {3, 1, 0, 0, 0}, {1, 4, 1, 0, 0}, {0, 0, 3, 1, 0}, {0, 0, 0, 0, 1}} and this gives summed by columns {5, 5, 4, 1, 1}
Triangle begins :
   1;
   1,  1;
   2,  1,  1;
   3,  3,  1, 1;
   5,  5,  4, 1, 1;
   8, 10,  7, 5, 1, 1;
  13, 18, 16, 9, 6, 1, 1;
...
(0, 1, 1, -1, 0, 0, 0, ...) DELTA (1, 0, -1, 1, 0, 0, 0, ...) begins :
  1;
  0,  1;
  0,  1,  1;
  0,  2,  1,  1;
  0,  3,  3,  1, 1;
  0,  5,  5,  4, 1, 1;
  0,  8, 10,  7, 5, 1, 1;
  0, 13, 18, 16, 9, 6, 1, 1;
		

Crossrefs

Column k = 1 is A000045.
Row sums are A000079.
Column k = 2 is A010049.
For runs instead of anti-runs we have A202064.
For integer partitions see A268193, strict A384905, runs A116674.
A034839 counts subsets by number of maximal runs.
A384175 counts subsets with all distinct lengths of maximal runs, complement A384176.
A384877 gives lengths of maximal anti-runs in binary indices, firsts A384878.
A384893 counts subsets by number of maximal anti-runs.

Programs

  • GAP
    Flat(List([0..12], n-> List([0..n], k-> Sum([0..n], j->  Binomial(j,k)*Binomial(n-j,j-k)) ))); # G. C. Greubel, May 16 2019
  • Magma
    [[(&+[Binomial(j,k)*Binomial(n-j,j-k): j in [0..n]]): k in [0..n]]: n in [0..12]]; // G. C. Greubel, May 16 2019
    
  • Maple
    a:= (n, m)-> add(binomial(k, m)*binomial(n-k, k-m), k=0..n):
    seq(seq(a(n,m), m=0..n), n=0..12);  # Alois P. Heinz, Sep 19 2013
  • Mathematica
    Table[Sum[Binomial[k, m]*Binomial[n-k, k-m], {k,0,n}], {n,0,12}, {m,0,n}]
  • PARI
    {T(n,k) = sum(j=0,n, binomial(j,k)*binomial(n-j,j-k))}; \\ G. C. Greubel, May 16 2019
    
  • Sage
    [[sum(binomial(j,k)*binomial(n-j,j-k) for j in (0..n)) for k in (0..n)] for n in (0..12)] # G. C. Greubel, May 16 2019
    

Formula

From Philippe Deléham, Mar 05 2012: (Start)
T(n,k) = T(n-1,k) + T(n-1,k-1) + T(n-2,k) - T(n-2,k-1), T(0,0) = T(1,0) = T(1,1) = 1 and T(n,k) = 0 if k<0 or if k>n.
G.f.: 1/(1-(1+y)*x-(1-y)*x^2).
Sum_{k, 0<=k<=n} T(n,k)*x^k = A077957(n), A000045(n+1), A000079(n), A001906(n+1), A007070(n), A116415(n), A084326(n+1), A190974(n+1), A190978(n+1), A190984(n+1), A190990(n+1), A190872(n+1) for x = -1, 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 respectively. (End)

A190871 a(n) = 11*a(n-1) - 11*a(n-2), a(0)=0, a(1)=1.

Original entry on oeis.org

0, 1, 11, 110, 1089, 10769, 106480, 1052821, 10409751, 102926230, 1017681269, 10062305429, 99490865760, 983714163641, 9726456276691, 96170163243550, 950880776635449, 9401816747310889, 92960295677429840, 919143268231308461, 9088012698092664831
Offset: 0

Views

Author

Rolf Pleisch, May 22 2011

Keywords

Crossrefs

Programs

  • Magma
    [n le 2 select n-1 else 11*(Self(n-1) - Self(n-2)): n in [1..31]]; // G. C. Greubel, Sep 11 2023
    
  • Mathematica
    LinearRecurrence[{11,-11}, {0,1}, 50] (* T. D. Noe, May 23 2011 *)
  • PARI
    concat(0, Vec(x/(1-11*x+11*x^2) + O(x^100))) \\ Altug Alkan, Dec 18 2015
    
  • SageMath
    def A190871(n): return (sqrt(11))^(n-1)*chebyshev_U(n-1, sqrt(11)/2)
    [A190871(n) for n in range(31)] # G. C. Greubel, Sep 11 2023

Formula

a(n) = ((11+sqrt(77))^n-(11-sqrt(77))^n)/(2^n*sqrt(77)).
G.f.: x/(1-11x+11x^2). - Philippe Deléham, Dec 21 2011
E.g.f.: (2/sqrt(77))*exp(11*x/2)*sinh(sqrt(77)*x/2). - G. C. Greubel, Dec 18 2015
a(n) = (sqrt(11))^(n-1)*chebyshev_U(n-1, sqrt(11)/2). - G. C. Greubel, Sep 11 2023

Extensions

Extended by T. D. Noe, May 23 2011

A190873 a(n) = 12*a(n-1) - 12*a(n-2), a(0)=0, a(1)=1.

Original entry on oeis.org

0, 1, 12, 132, 1440, 15696, 171072, 1864512, 20321280, 221481216, 2413919232, 26309256192, 286744043520, 3125217447936, 34061680852992, 371237560860672, 4046110560092160, 44098475990777856, 480628385168228352, 5238358910129405952, 57092766299534131200
Offset: 0

Views

Author

Rolf Pleisch, May 22 2011

Keywords

Crossrefs

Programs

  • Magma
    [n le 2 select n-1 else 12*(Self(n-1) - Self(n-2)): n in [1..31]]; // G. C. Greubel, Sep 11 2023
    
  • Mathematica
    LinearRecurrence[{12,-12}, {0,1}, 50] (* T. D. Noe, May 23 2011 *)
  • PARI
    concat(0, Vec(x/(1-12*x+12*x^2) + O(x^100))) \\ Altug Alkan, Dec 18 2015
    
  • SageMath
    def A190873(n): return (2*sqrt(3))^(n-1)*chebyshev_U(n-1, sqrt(3))
    [A190873(n) for n in range(31)] # G. C. Greubel, Sep 11 2023

Formula

a(n) = 2^(n-2)*((3+sqrt(6))^n - (3-sqrt(6))^n)/sqrt(6).
G.f.: x/(1 - 12*x + 12*x^2). - Philippe Deléham, Dec 21 2011
E.g.f.: (1/(2*sqrt(6)))*exp(6*x)*sinh(2*sqrt(6)*x). - G. C. Greubel, Dec 18 2015
a(n) = (2*sqrt(3))^(n-1)*chebyshev_U(n-1, sqrt(3)). - G. C. Greubel, Sep 11 2023

Extensions

Extended by T. D. Noe, May 23 2011

A333345 Decimal expansion of (11 + sqrt(85))/2.

Original entry on oeis.org

1, 0, 1, 0, 9, 7, 7, 2, 2, 2, 8, 6, 4, 6, 4, 4, 3, 6, 5, 5, 0, 0, 1, 1, 3, 7, 1, 4, 0, 8, 8, 1, 3, 9, 6, 5, 7, 8, 6, 2, 3, 4, 0, 2, 5, 2, 4, 3, 6, 1, 2, 3, 2, 0, 0, 4, 0, 0, 3, 8, 7, 6, 1, 0, 2, 7, 2, 1, 3, 3, 5, 5, 1, 3, 4, 0, 0, 9, 3, 7, 7, 3, 0, 3, 8, 3, 9, 4, 7, 0, 4, 5, 3, 9, 6, 6, 4, 0, 2, 8, 2, 4, 7, 0, 1, 6, 9, 9
Offset: 2

Views

Author

Kevin Ryde, Mar 15 2020

Keywords

Comments

This constant is Heuberger and Wagner's lambda. They consider the number of maximum matchings a tree of n vertices may have, and show that the largest number of maximum matchings (A333347) grows as O(lambda^(n/7)) (see A333346 for the 7th root). Lambda is the larger eigenvalue of matrix M = [8,3/5,3] which is raised to a power when counting matchings in a chain of "C" parts in the trees (their lemma 6.2).
Apart from the first digit the same as A176522. - R. J. Mathar, Apr 03 2020

Examples

			10.1097722286...
		

Crossrefs

Sequences growing as this power: A147841, A190872, A333344.
Cf. A333346 (seventh root), A176522.

Programs

  • Mathematica
    With[{$MaxExtraPrecision = 1000}, First@ RealDigits[(11 + Sqrt[85])/2, 10, 105]] (* Michael De Vlieger, Mar 15 2020 *)
  • PARI
    (11 + sqrt(85))/2 \\ Michel Marcus, May 21 2020

Formula

Equals continued fraction [10; 9] = 10 + 1/(9 + 1/(9 + 1/(9 + 1/...))). - Peter Luschny, Mar 15 2020

A333347 Largest number of maximum matchings in a tree of n vertices.

Original entry on oeis.org

1, 1, 1, 2, 3, 4, 5, 8, 11, 15, 21, 30, 41, 56, 81, 112, 153, 216, 303, 418, 571, 819, 1133, 1560, 2187, 3063, 4235, 5832, 8280, 11455, 15807, 22140, 30966, 42823, 59049, 83709, 115808, 160083, 224100, 313059, 432992, 597861, 846279, 1170793, 1618650, 2268000, 3164955
Offset: 0

Views

Author

Kevin Ryde, Mar 15 2020

Keywords

Comments

Heuberger and Wagner consider how many different maximum matchings a tree of n vertices may have. They determine the unique tree (free tree) of n vertices with the largest number of maximum matchings, or at n=6 and n=34 the two trees with equal largest number. a(n) is the largest number of maximum matchings. They show that a(n) grows as O(1.391...^n), where the power is ((11 + sqrt(85))/2)^(1/7) = A333346.
They note an algebraic interpretation too, that a(n) is the largest possible absolute value of the product of the nonzero eigenvalues of the adjacency matrix of a tree of n vertices. This is simply that, in the usual way, a term +- m*x^j in the characteristic polynomial of that matrix means there are m matchings which have j vertices unmatched. The smallest j with a nonzero m is the maximum matchings, and that m is also the product of the nonzero roots.
In Heuberger and Wagner's Sage code, optimal_m(n) is a(n) for the general case tree forms. Their general case symbolic calculations are in terms of lambda = (11 + sqrt(85))/2 = A333345 and its quadratic conjugate lambdabar = (11 - sqrt(85))/2 (called alpha and alphabar in the code). The resulting coefficients give constants c_0 through c_6 in their paper for a(n) -> c_{n mod 7} * lambda^(n/7) (theorem 1.2).
The combinations of powers of lambda and lambdabar occurring are linear recurrences. Recurrence coefficients can be found from a symbolic calculation, or from explicit values and an upper bound on recurrence orders from the patterns of branch lengths and powers. Each case n mod 7 is a recurrence of order up to 44. The simplest is G_k = A190872(k) for n == 1 (mod 7) in the formulas below. Other cases are G variants, and possible additional terms growing slower than G.
The full recurrence for all n is order 574 applying at n=31 onwards (after the last initial exception at n=30). See the links for recurrence coefficients and generating function.

Crossrefs

Cf. A190872, A333345, A333346 (growth power), A333348 (matching number).

Formula

For n == 0 (mod 7) and k = n/7 >= 1, a(n) = 8*A190872(k) - 7*A190872(k-1).
For n == 1 (mod 7) and k = (n-1)/7, a(n) = A190872(k+1). [Heuberger and Wagner theorem 3.3 (1) and lemma 6.2 (2)]
For n == 4 (mod 7) and k = (n-4)/7, a(n) = 3*A333344(k). [Heuberger and Wagner theorem 3.3 (4) and lemma 6.2 (2)]

A147841 a(n) = 11*a(n-1) - 9*a(n-2) with a(0)=1, a(1)=9.

Original entry on oeis.org

1, 9, 90, 909, 9189, 92898, 939177, 9494865, 95990922, 970446357, 9810991629, 99186890706, 1002756873105, 10137643587801, 102489267607866, 1036143151396317, 10475171256888693, 105901595463208770, 1070641008783298233, 10823936737447401633, 109427535032871733866, 1106287454724562457829, 11184314186674341431325
Offset: 0

Views

Author

Philippe Deléham, Nov 14 2008

Keywords

Crossrefs

Cf. A147703, A190872, A333344, A333345 (growth power).

Programs

  • Maple
    A147841:= n-> simplify( 3^n*(ChebyshevU(n, 11/6) - (2/3)*ChebyshevU(n-1, 11/6)) ):
    seq(A147841(n), n=0..25); # G. C. Greubel, May 28 2020
  • Mathematica
    Table[3^n*(ChebyshevU[n, 11/6] - (2/3)*ChebyshevU[n-1, 11/6]), {n,0,25}] (* G. C. Greubel, May 28 2020 *)
    LinearRecurrence[{11,-9},{1,9},30] (* Harvey P. Dale, Feb 28 2023 *)
  • PARI
    a(n) = polcoeff(lift(('x-2)*Mod('x,'x^2-11*'x+9)^n), 1); \\ Kevin Ryde, Apr 11 2020

Formula

a(n) = Sum_{k=0..n} A147703(n,k)*8^k.
G.f.: (1-2*x)/(1 -11*x +9*x^2).
a(n) = 9*A333344(n-1) = A190872(n+1) - 2*A190872(n) = A333344(n) - A190872(n). - Kevin Ryde, Apr 11 2020
a(n) = 3^n*(ChebyshevU(n, 11/6) - (2/3)*ChebyshevU(n-1, 11/6)). - G. C. Greubel, May 28 2020
E.g.f.: exp(11*x/2)*(85*cosh(sqrt(85)*x/2) + 7*sqrt(85)*sinh(sqrt(85)*x/2))/85. - Stefano Spezia, Mar 02 2023

Extensions

Entries corrected by Paolo P. Lava, Nov 18 2008
Terms a(18) onward added by G. C. Greubel, May 28 2020

A333344 a(n) = 11*a(n-1) - 9*a(n-2) starting a(0)=1, a(1)=10.

Original entry on oeis.org

1, 10, 101, 1021, 10322, 104353, 1054985, 10665658, 107827373, 1090110181, 11020765634, 111417430345, 1126404843089, 11387696400874, 115127016821813, 1163907917432077, 11766843940356530, 118960112087033137, 1202659637494155737
Offset: 0

Views

Author

Kevin Ryde, Mar 15 2020

Keywords

Comments

First differences of A190872.

Crossrefs

Cf. A333345 (growth power), A190872 (partial sums), A147841, A333347.

Programs

  • Mathematica
    LinearRecurrence[{11, -9}, {1, 10}, 20] (* Amiram Eldar, Mar 15 2020 *)
  • PARI
    a(n) = polcoeff(lift(('x-1)*Mod('x,'x^2-11*'x+9)^n), 1);

Formula

a(n) = A190872(n+1) - A190872(n) = A190872(n) + A147841(n).
G.f.: (1 - x)/(1 - 11*x + 9*x^2).
E.g.f.: exp(11*x/2)*(85*cosh(sqrt(85)*x/2) + 9*sqrt(85)*sinh(sqrt(85)*x/2))/85. - Stefano Spezia, Mar 03 2023

A190870 a(n) = 11*a(n-1) - 22*a(n-2), a(0)=0, a(1)=1.

Original entry on oeis.org

0, 1, 11, 99, 847, 7139, 59895, 501787, 4201967, 35182323, 294562279, 2466173963, 20647543455, 172867150819, 1447292702999, 12117142414971, 101448127098703, 849352264956371, 7111016118348615, 59535427472794603, 498447347597071103, 4173141419166300867
Offset: 0

Views

Author

Rolf Pleisch, May 22 2011

Keywords

Crossrefs

Programs

  • Mathematica
    LinearRecurrence[{11, -22}, {0, 1}, 50] (* T. D. Noe, May 23 2011 *)
  • PARI
    concat(0, Vec(x/(1-11*x+22*x^2) + O(x^100))) \\ Altug Alkan, Dec 18 2015

Formula

a(n) = ((11+sqrt(33))^n-(11-sqrt(33))^n)/(2^n*sqrt(33)).
E.g.f.: (2/sqrt(33))*exp(11*x/2)*sinh(sqrt(33)*x/2). - G. C. Greubel, Dec 18 2015
G.f.: x/(1-11*x+22*x^2). - G. C. Greubel, Dec 18 2015

Extensions

Extended by T. D. Noe, May 23 2011

A206800 Riordan array (1/(1-3*x+x^2), x*(1-x)/(1-3*x+x^2)).

Original entry on oeis.org

1, 3, 1, 8, 5, 1, 21, 19, 7, 1, 55, 65, 34, 9, 1, 144, 210, 141, 53, 11, 1, 377, 654, 534, 257, 76, 13, 1, 987, 1985, 1905, 1111, 421, 103, 15, 1, 2584, 5911, 6512, 4447, 2041, 641, 134, 17, 1, 6765, 17345, 21557, 16837, 9038, 3440, 925, 169, 19, 1
Offset: 0

Views

Author

Philippe Deléham, Feb 12 2012

Keywords

Examples

			Triangle begins :
1
3, 1
8, 5, 1
21, 19, 7, 1
55, 65, 34, 9, 1
144, 210, 141, 53, 11, 1
377, 654, 534, 257, 76, 13, 1
987, 1985, 1905, 1111, 421, 103, 15, 1
2584, 5911, 6512, 4447, 2041, 641, 134, 17, 1
6765, 17345, 21557, 16837, 9038, 3440, 925, 169, 19, 1
Triangle (0,3,-1/3,1/3,0,0,0,0,0,...) DELTA (1,0,-1/3,1/3,0,0,0,0,...) begins :
1
0, 1
0, 3, 1
0, 8, 5, 1
0, 21, 19, 7, 1
0, 55, 65, 34, 9, 1...
		

References

  • Subtriangle of the triangle given by (0, 3, -1/3, 1/3, 0, 0, 0, 0, 0, 0, 0, ...) DELTA (1, 0, -1/3, 1/3, 0, 0, 0, 0, 0, 0, 0, ...) where DELTA is the operator defined in A084938.
  • Antidiagonal sums are A072264(n).

Crossrefs

Formula

T(n,k) = 3*T(n-1,k) + T(n-1,k-1) - T(n-2,k) - T(n-2,k-1).
G.f.: 1/(1-(y+3)*x+(y+1)*x^2).
Sum_{k, 0<=k<=n} T(n,k)*x^k = (-1)^n* A015587(n+1), (-1)^n*A190953(n+1), (-1)^n*A015566(n+1), (-1)*A189800(n+1), (-1)^n*A015541(n+1), (-1)^n*A085939(n+1), (-1)^n*A015523(n+1), (-1)^n*A063727(n), (-1)^n*A006130(n), A077957(n), A000045(n+1), A000079(n), A001906(n+1), A007070(n), A116415(n), A084326(n+1), A190974(n+1), A190978(n+1), A190984(n+1), A190990(n+1), A190872(n) for x = -12, -11, -10, -9, -8, -7, -6, -5, -4, -3, -2, -1, 0, 1, 2, 3, 4, 5, 6, 7, 8 respectively.

A268344 a(n) = 11*a(n - 1) - 3*a(n - 2) for n>1, a(0)=0, a(1)=1.

Original entry on oeis.org

0, 1, 11, 118, 1265, 13561, 145376, 1558453, 16706855, 179100046, 1919979941, 20582479213, 220647331520, 2365373209081, 25357163305331, 271832676731398, 2914087954129385, 31239469465229041, 334891900255131296, 3590092494410757133
Offset: 0

Views

Author

Ilya Gutkovskiy, Feb 02 2016

Keywords

Comments

In general, the ordinary generating function for the recurrence relation b(n) = k*b(n - 1) - m*b(n - 2), with n>1 and b(0)=0, b(1)=1, is x/(1 - k*x + m*x^2). This recurrence gives the closed form b(n) = (2^(-n)*((sqrt(k^2 - 4*m) + k)^n - (k - sqrt(k^2 - 4*m))^n))/sqrt(k^2 - 4*m).

Crossrefs

Programs

  • Magma
    I:=[0,1]; [n le 2 select I[n] else 11*Self(n-1) - 3*Self(n-2): n in [1..30]]; // G. C. Greubel, Jan 14 2018
  • Mathematica
    LinearRecurrence[{11, -3}, {0, 1}, 20] (* or *) Table[(((11 + Sqrt[109])/2)^n - ((11 - Sqrt[109])/2)^n)/Sqrt[109], {n, 0, 20}]
  • PARI
    x='x+O('x^30); concat([0], Vec(x/(1-11*x+3*x^2))) \\ G. C. Greubel, Jan 14 2018
    

Formula

G.f.: x/(1 - 11*x + 3*x^2).
a(n) = ( ((11 + sqrt(109))/2)^n - ((11 - sqrt(109))/2)^n )/sqrt(109).
Showing 1-10 of 10 results.