A190872
a(n) = 11*a(n-1) - 9*a(n-2), a(0)=0, a(1)=1.
Original entry on oeis.org
0, 1, 11, 112, 1133, 11455, 115808, 1170793, 11836451, 119663824, 1209774005, 12230539639, 123647969984, 1250052813073, 12637749213947, 127764766035760, 1291672683467837, 13058516623824367, 132018628710857504, 1334678266205013241, 13493293269857428115
Offset: 0
- G. C. Greubel, Table of n, a(n) for n = 0..1000
- Clemens Heuberger and Stephan Wagner, The Number of Maximum Matchings in a Tree, Discrete Mathematics, volume 311, issue 21, November 2011, pages 2512-2542; arXiv preprint, arXiv:1011.6554 [math.CO], 2010.
- Index entries for linear recurrences with constant coefficients, signature (11,-9).
-
I:=[0,1]; [n le 2 select I[n] else 11*Self(n-1)-9*Self(n-2): n in [1..30]]; // Vincenzo Librandi, Dec 19 2015
-
LinearRecurrence[{11, -9}, {0, 1}, 50] (* T. D. Noe, May 23 2011 *)
-
concat(0, Vec(x/(1-11*x+9*x^2) + O(x^100))) \\ Altug Alkan, Dec 18 2015
-
a(n) = polcoeff(lift(Mod('x,'x^2-11*'x+9)^n), 1); \\ Kevin Ryde, Apr 11 2020
A190871
a(n) = 11*a(n-1) - 11*a(n-2), a(0)=0, a(1)=1.
Original entry on oeis.org
0, 1, 11, 110, 1089, 10769, 106480, 1052821, 10409751, 102926230, 1017681269, 10062305429, 99490865760, 983714163641, 9726456276691, 96170163243550, 950880776635449, 9401816747310889, 92960295677429840, 919143268231308461, 9088012698092664831
Offset: 0
-
[n le 2 select n-1 else 11*(Self(n-1) - Self(n-2)): n in [1..31]]; // G. C. Greubel, Sep 11 2023
-
LinearRecurrence[{11,-11}, {0,1}, 50] (* T. D. Noe, May 23 2011 *)
-
concat(0, Vec(x/(1-11*x+11*x^2) + O(x^100))) \\ Altug Alkan, Dec 18 2015
-
def A190871(n): return (sqrt(11))^(n-1)*chebyshev_U(n-1, sqrt(11)/2)
[A190871(n) for n in range(31)] # G. C. Greubel, Sep 11 2023
A167925
Triangle, T(n, k) = (sqrt(k+1))^(n-1)*ChebyshevU(n-1, sqrt(k+1)/2), read by rows.
Original entry on oeis.org
0, 1, 1, 1, 2, 3, 0, 2, 6, 12, -1, 0, 9, 32, 75, -1, -4, 9, 80, 275, 684, 0, -8, 0, 192, 1000, 3240, 8232, 1, -8, -27, 448, 3625, 15336, 47677, 122368, 1, 0, -81, 1024, 13125, 72576, 276115, 835584, 2158569, 0, 16, -162, 2304, 47500, 343440, 1599066, 5705728, 16953624, 44010000
Offset: 0
Triangle begins as:
0;
1, 1;
1, 2, 3;
0, 2, 6, 12;
-1, 0, 9, 32, 75;
-1, -4, 9, 80, 275, 684;
0, -8, 0, 192, 1000, 3240, 8232;
1, -8, -27, 448, 3625, 15336, 47677, 122368;
1, 0, -81, 1024, 13125, 72576, 276115, 835584, 2158569;
Cf.
A009545,
A030191,
A030192,
A030240,
A057083,
A057084,
A057085,
A057086,
A099087,
A128834,
A190871,
A190873.
-
A167925:= func< n,k | Round((Sqrt(k+1))^(n-1)*Evaluate(ChebyshevSecond(n), Sqrt(k+1)/2)) >;
[A167925(n,k): k in [0..n], n in [0..12]]; // G. C. Greubel, Sep 11 2023
-
(* First program *)
m[k_]= {{k,1}, {-1,1}};
v[0, k_]:= {0,1};
v[n_, k_]:= v[n, k]= m[k].v[n-1,k];
T[n_, k_]:= v[n, k][[1]];
Table[T[n, k], {n,0,12}, {k,0,n}]//Flatten
(* Second program *)
A167925[n_, k_]:= (Sqrt[k+1])^(n-1)*ChebyshevU[n-1, Sqrt[k+1]/2];
Table[A167925[n, k], {n,0,12}, {k,0,n}]//Flatten (* G. C. Greubel, Sep 11 2023 *)
-
def A167925(n,k): return (sqrt(k+1))^(n-1)*chebyshev_U(n-1, sqrt(k+1)/2)
flatten([[A167925(n,k) for k in range(n+1)] for n in range(13)]) # G. C. Greubel, Sep 11 2023
A190870
a(n) = 11*a(n-1) - 22*a(n-2), a(0)=0, a(1)=1.
Original entry on oeis.org
0, 1, 11, 99, 847, 7139, 59895, 501787, 4201967, 35182323, 294562279, 2466173963, 20647543455, 172867150819, 1447292702999, 12117142414971, 101448127098703, 849352264956371, 7111016118348615, 59535427472794603, 498447347597071103, 4173141419166300867
Offset: 0
-
LinearRecurrence[{11, -22}, {0, 1}, 50] (* T. D. Noe, May 23 2011 *)
-
concat(0, Vec(x/(1-11*x+22*x^2) + O(x^100))) \\ Altug Alkan, Dec 18 2015
A202551
Triangle T(n,k), read by rows, given by (1, -1, 1, 0, 0, 0, 0, 0, 0, 0, ...) DELTA (-1, 0, 0, 0, 0, 0, 0, 0, 0, 0, ...) where DELTA is the operator defined in A084938.
Original entry on oeis.org
1, 1, -1, 0, -1, 1, -1, 1, 1, -1, -1, 3, -2, -1, 1, 0, 2, -5, 3, 1, -1, 1, -2, -2, 7, -4, -1, 1, 1, -5, 7, 1, -9, 5, 1, -1, 0, -3, 12, -15, 1, 11, -6, -1, 1, -1, 3, 3, -21, 26, -4, -13, 7, 1, -1
Offset: 0
Triangle begins :
1
1, -1
0, -1, 1
-1, 1, 1, -1
-1, 3, -2, -1, 1
0, 2, -5, 3, 1, -1
Showing 1-5 of 5 results.
Comments