cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A147703 Triangle [1,1,1,0,0,0,...] DELTA [1,0,0,0,...] with Deléham DELTA defined in A084938.

Original entry on oeis.org

1, 1, 1, 2, 3, 1, 5, 9, 5, 1, 13, 27, 20, 7, 1, 34, 80, 73, 35, 9, 1, 89, 234, 252, 151, 54, 11, 1, 233, 677, 837, 597, 269, 77, 13, 1, 610, 1941, 2702, 2225, 1199, 435, 104, 15, 1, 1597, 5523, 8533, 7943, 4956, 2158, 657, 135, 17, 1
Offset: 0

Views

Author

Paul Barry, Nov 10 2008

Keywords

Comments

Equal to A062110*A007318 when A062110 is regarded as a triangle read by rows.

Examples

			Triangle begins
   1;
   1,   1;
   2,   3,   1;
   5,   9,   5,   1;
  13,  27,  20,   7,  1;
  34,  80,  73,  35,  9,  1;
  89, 234, 252, 151, 54, 11, 1;
		

Crossrefs

Row sums are A006012. Diagonal sums are A147704.

Programs

  • Maple
    # The function RiordanSquare is defined in A321620:
    RiordanSquare(1 / (1 - x / (1 - x / (1 - x))), 10); # Peter Luschny, Jan 26 2020
  • Mathematica
    nmax=9; Flatten[CoefficientList[Series[CoefficientList[Series[(1 - 2*x)/(1 - (3 + y)*x + (1 + y)*x^2), {x, 0, nmax}], x], {y, 0, nmax}], y]] (* Indranil Ghosh, Mar 11 2017 *)

Formula

Riordan array ((1-2x)/(1-3x+x^2), x(1-x)/(1-3x+x^2)).
Sum_{k=0..n} T(n,k)*x^k = A152239(n), A152223(n), A152185(n), A152174(n), A152167(n), A152166(n), A152163(n), A000007(n), A001519(n), A006012(n), A081704(n), A082761(n), A147837(n), A147838(n), A147839(n), A147840(n), A147841(n), for x = -8, -7, -6, -5, -4, -3, -2, -1, 0, 1, 2, 3, 4, 5, 6, 7, 8 respectively. - Philippe Deléham, Dec 01 2008
G.f.: (1-2*x)/(1-(3+y)*x+(1+y)*x^2). - Philippe Deléham, Nov 26 2011
T(n,k) = 3*T(n-1,k) + T(n-1,k-1) - T(n-2,k) - T(n-2,k-1), for n > 1. - Philippe Deléham, Feb 12 2012
The Riordan square of the odd indexed Fibonacci numbers A001519. - Peter Luschny, Jan 26 2020

A062110 A(n,k) is the coefficient of x^k in (1-x)^n/(1-2*x)^n for n, k >= 0; Table A read by descending antidiagonals.

Original entry on oeis.org

1, 0, 1, 0, 1, 1, 0, 2, 2, 1, 0, 4, 5, 3, 1, 0, 8, 12, 9, 4, 1, 0, 16, 28, 25, 14, 5, 1, 0, 32, 64, 66, 44, 20, 6, 1, 0, 64, 144, 168, 129, 70, 27, 7, 1, 0, 128, 320, 416, 360, 225, 104, 35, 8, 1, 0, 256, 704, 1008, 968, 681, 363, 147, 44, 9, 1, 0, 512, 1536, 2400, 2528, 1970
Offset: 0

Views

Author

Henry Bottomley, May 30 2001

Keywords

Comments

The triangular version of this square array is defined by T(n,k) = A(k,n-k) for 0 <= k <= n. Conversely, A(n,k) = T(n+k,n) for n,k >= 0. We have [o.g.f of T](x,y) = [o.g.f. of A](x*y, x) and [o.g.f. of A](x,y) = [o.g.f. of T](y,x/y). - Petros Hadjicostas, Feb 11 2021
From Paul Barry, Nov 10 2008: (Start)
As number triangle, Riordan array (1, x(1-x)/(1-2x)). A062110*A007318 is A147703.
[0,1,1,0,0,0,....] DELTA [1,0,0,0,.....]. (Philippe Deléham's DELTA is defined in A084938.) (End)
Modulo 2, this triangle T becomes triangle A106344. - Philippe Deléham, Dec 18 2008

Examples

			Table A(n,k) (with rows n >= 0 and columns k >= 0) begins:
  1, 0,  0,   0,   0,    0,    0,     0,     0,     0, ...
  1, 1,  2,   4,   8,   16,   32,    64,   128,   256, ...
  1, 2,  5,  12,  28,   64,  144,   320,   704,  1536, ...
  1, 3,  9,  25,  66,  168,  416,  1008,  2400,  5632, ...
  1, 4, 14,  44, 129,  360,  968,  2528,  6448, 16128, ...
  1, 5, 20,  70, 225,  681, 1970,  5500, 14920, 39520, ...
  1, 6, 27, 104, 363, 1182, 3653, 10836, 31092, 86784, ...
  ... - _Petros Hadjicostas_, Feb 15 2021
Triangle T(n,k) (with rows n >= 0 and columns k = 0..n) begins:
  1;
  0,   1;
  0,   1,   1;
  0,   2,   2,   1;
  0,   4,   5,   3,   1;
  0,   8,  12,   9,   4,   1;
  0,  16,  28,  25,  14,   5,   1;
  0,  32,  64,  66,  44,  20,   6,   1;
  0,  64, 144, 168, 129,  70,  27,   7,   1;
  0, 128, 320, 416, 360, 225, 104,  35,   8,   1;
  ... - _Philippe Deléham_, Nov 30 2008
		

Crossrefs

Columns of A include A000012, A001477, A000096, A000297.
Main diagonal of A is A002002.
Table A(n, k) is a multiple of 2^(k-n); dividing by this gives a table similar to A050143 except at the edges.
Essentially the same array as A105306, A160232.

Programs

  • Mathematica
    t[n_, n_] = 1; t[n_, k_] := 2^(n-2*k)*k*Hypergeometric2F1[1-k, n-k+1, 2, -1]; Table[t[n, k], {n, 0, 11}, {k, 0, n}] // Flatten (* Jean-François Alcover, Oct 30 2013, after Philippe Deléham + symbolic sum *)
  • PARI
    a(i,j)=if(i<0 || j<0,0,polcoeff(((1-x)/(1-2*x)+x*O(x^j))^i,j))

Formula

Formulas for the square array (A(n,k): n,k >= 0):
A(n, k) = A(n-1, k) + Sum_{0 <= j < k} A(n, j) for n >= 1 and k >= 0 with A(0, k) = 0^k for k >= 0.
G.f.: 1/(1-x*(1-y)/(1-2*y)) = Sum_{i, j >= 0} A(i, j) x^i*y^j.
From Petros Hadjicostas, Feb 15 2021: (Start)
A(n,k) = 2^(k-n)*n*hypergeom([1-n, k+1], [2], -1) for n >= 0 and k >= 1.
A(n,k) = 2*A(n,k-1) + A(n-1,k) - A(n-1,k-1) for n,k >= 1 with A(n,0) = 1 for n >= 0 and A(0,k) = 0 for k >= 1. (End)
Formulas for the triangle (T(n,k): 0 <= k <= n):
From Philippe Deléham, Aug 01 2006: (Start)
T(n,k) = A121462(n+1,k+1)*2^(n-2*k) for 0 <= k < n.
T(n,k) = 2^(n-2*k)*k*hypergeom([1-k, n-k+1], [2], -1) for 0 <= k < n. (End)
Sum_{k=0..n} T(n,k)*x^k = A152239(n), A152223(n), A152185(n), A152174(n), A152167(n), A152166(n), A152163(n), A000007(n), A001519(n), A006012(n), A081704(n), A082761(n), A147837(n), A147838(n), A147839(n), A147840(n), A147841(n), for x = -7,-6,-5,-4,-3,-2,-1,0,1,2,3,4,5,6,7,8,9 respectively. - Philippe Deléham, Dec 09 2008
T(n,k) = 2*T(n-1,k) + T(n-1,k-1) - T(n-2,k-1) for 1 <= k <= n-1 with T(0,0) = T(1,1) = T(2,1) = T(2,2) = 1, T(1,0) = T(2,0) = 0, and T(n,k) = 0 if k > n or if k < 0. - Philippe Deléham, Oct 30 2013
G.f.: Sum_{n.k>=0} T(n,k)*x^n*y^k = (1 - 2*x)/(x^2*y - x*y - 2*x + 1). - Petros Hadjicostas, Feb 15 2021

Extensions

Various sections edited by Petros Hadjicostas, Feb 15 2021

A333345 Decimal expansion of (11 + sqrt(85))/2.

Original entry on oeis.org

1, 0, 1, 0, 9, 7, 7, 2, 2, 2, 8, 6, 4, 6, 4, 4, 3, 6, 5, 5, 0, 0, 1, 1, 3, 7, 1, 4, 0, 8, 8, 1, 3, 9, 6, 5, 7, 8, 6, 2, 3, 4, 0, 2, 5, 2, 4, 3, 6, 1, 2, 3, 2, 0, 0, 4, 0, 0, 3, 8, 7, 6, 1, 0, 2, 7, 2, 1, 3, 3, 5, 5, 1, 3, 4, 0, 0, 9, 3, 7, 7, 3, 0, 3, 8, 3, 9, 4, 7, 0, 4, 5, 3, 9, 6, 6, 4, 0, 2, 8, 2, 4, 7, 0, 1, 6, 9, 9
Offset: 2

Views

Author

Kevin Ryde, Mar 15 2020

Keywords

Comments

This constant is Heuberger and Wagner's lambda. They consider the number of maximum matchings a tree of n vertices may have, and show that the largest number of maximum matchings (A333347) grows as O(lambda^(n/7)) (see A333346 for the 7th root). Lambda is the larger eigenvalue of matrix M = [8,3/5,3] which is raised to a power when counting matchings in a chain of "C" parts in the trees (their lemma 6.2).
Apart from the first digit the same as A176522. - R. J. Mathar, Apr 03 2020

Examples

			10.1097722286...
		

Crossrefs

Sequences growing as this power: A147841, A190872, A333344.
Cf. A333346 (seventh root), A176522.

Programs

  • Mathematica
    With[{$MaxExtraPrecision = 1000}, First@ RealDigits[(11 + Sqrt[85])/2, 10, 105]] (* Michael De Vlieger, Mar 15 2020 *)
  • PARI
    (11 + sqrt(85))/2 \\ Michel Marcus, May 21 2020

Formula

Equals continued fraction [10; 9] = 10 + 1/(9 + 1/(9 + 1/(9 + 1/...))). - Peter Luschny, Mar 15 2020

A333344 a(n) = 11*a(n-1) - 9*a(n-2) starting a(0)=1, a(1)=10.

Original entry on oeis.org

1, 10, 101, 1021, 10322, 104353, 1054985, 10665658, 107827373, 1090110181, 11020765634, 111417430345, 1126404843089, 11387696400874, 115127016821813, 1163907917432077, 11766843940356530, 118960112087033137, 1202659637494155737
Offset: 0

Views

Author

Kevin Ryde, Mar 15 2020

Keywords

Comments

First differences of A190872.

Crossrefs

Cf. A333345 (growth power), A190872 (partial sums), A147841, A333347.

Programs

  • Mathematica
    LinearRecurrence[{11, -9}, {1, 10}, 20] (* Amiram Eldar, Mar 15 2020 *)
  • PARI
    a(n) = polcoeff(lift(('x-1)*Mod('x,'x^2-11*'x+9)^n), 1);

Formula

a(n) = A190872(n+1) - A190872(n) = A190872(n) + A147841(n).
G.f.: (1 - x)/(1 - 11*x + 9*x^2).
E.g.f.: exp(11*x/2)*(85*cosh(sqrt(85)*x/2) + 9*sqrt(85)*sinh(sqrt(85)*x/2))/85. - Stefano Spezia, Mar 03 2023
Showing 1-4 of 4 results.