A190958
a(n) = 2*a(n-1) - 10*a(n-2), with a(0) = 0, a(1) = 1.
Original entry on oeis.org
0, 1, 2, -6, -32, -4, 312, 664, -1792, -10224, -2528, 97184, 219648, -532544, -3261568, -1197696, 30220288, 72417536, -157367808, -1038910976, -504143872, 9380822016, 23803082752, -46202054656, -330434936832, -198849327104, 2906650714112, 7801794699264
Offset: 0
Sequences of the form a(n) = c*a(n-1) - d*a(n-2), with a(0)=0, a(1)=1:
c/d...1.......2.......3.......4.......5.......6.......7.......8.......9......10
-
I:=[0,1]; [n le 2 select I[n] else 2*Self(n-1)-10*Self(n-2): n in [1..30]]; // Vincenzo Librandi, Sep 17 2011
-
LinearRecurrence[{2,-10}, {0,1}, 50]
-
a(n)=([0,1; -10,2]^n*[0;1])[1,1] \\ Charles R Greathouse IV, Apr 08 2016
-
[lucas_number1(n,2,10) for n in (0..50)] # G. C. Greubel, Jun 10 2022
A367298
Triangular array T(n,k), read by rows: coefficients of strong divisibility sequence of polynomials p(1,x) = 1, p(2,x) = 2 + 4*x, p(n,x) = u*p(n-1,x) + v*p(n-2,x) for n >= 3, where u = p(2,x), v = 1 - 2*x - x^2.
Original entry on oeis.org
1, 2, 4, 5, 14, 15, 12, 48, 76, 56, 29, 148, 326, 372, 209, 70, 436, 1212, 1904, 1718, 780, 169, 1242, 4169, 8228, 10191, 7642, 2911, 408, 3456, 13576, 32176, 49992, 51488, 33112, 10864, 985, 9448, 42492, 117304, 218254, 281976, 249612, 140712, 40545
Offset: 1
First eight rows:
1
2 4
5 14 15
12 48 76 56
29 148 326 372 209
70 436 1212 1904 1718 780
169 1242 4169 8228 10191 7642 2911
408 3456 13576 32176 49992 51488 33112 10864
Row 4 represents the polynomial p(4,x) = 12 + 48*x + 76*x^2 + 56*x^3, so (T(4,k)) = (12,48,76,56), k=0..3.
Cf.
A000129 (column 1),
A001353 (p(n,n-1)),
A154244 (row sums, p(n,1)),
A002605 (alternating row sums, p(n,-1)),
A190989 (p(n,2)),
A005668 (p(n,-2)),
A190869 (p(n,-3)),
A094440,
A367208,
A367209,
A367210,
A367211,
A367297,
A367299,
A367300,
A367301.
-
p[1, x_] := 1; p[2, x_] := 2 + 4 x; u[x_] := p[2, x]; v[x_] := 1 - 2 x - x^2;
p[n_, x_] := Expand[u[x]*p[n - 1, x] + v[x]*p[n - 2, x]]
Grid[Table[CoefficientList[p[n, x], x], {n, 1, 10}]]
Flatten[Table[CoefficientList[p[n, x], x], {n, 1, 10}]]
A110441
Triangular array formed by the Mersenne numbers.
Original entry on oeis.org
1, 3, 1, 7, 6, 1, 15, 23, 9, 1, 31, 72, 48, 12, 1, 63, 201, 198, 82, 15, 1, 127, 522, 699, 420, 125, 18, 1, 255, 1291, 2223, 1795, 765, 177, 21, 1, 511, 3084, 6562, 6768, 3840, 1260, 238, 24, 1, 1023, 7181, 18324, 23276, 16758, 7266, 1932, 308, 27, 1
Offset: 0
Asamoah Nkwanta (nkwanta(AT)jewel.morgan.edu), Aug 08 2005
Triangle starts:
1;
3, 1;
7, 6, 1;
15, 23, 9, 1;
31, 72, 48, 12, 1;
(0, 3, -2/3, 2/3, 0, 0, 0, ...) DELTA (1, 0, 0, 0, 0, ...) begins:
1
0, 1
0, 3, 1
0, 7, 6, 1
0, 15, 23, 9, 1
0, 31, 72, 48, 12, 1. - _Philippe Deléham_, Mar 19 2012
With the arrays M(k) as defined in the Comments section, the infinite product M(0*)M(1)*M(2)*... begins
/ 1 \/1 \/1 \ / 1 \
| 3 1 ||0 1 ||0 1 | | 3 1 |
| 7 3 1 ||0 3 1 ||0 0 1 |... = | 7 6 1 |
|15 7 3 1 ||0 7 3 1 ||0 0 3 1 | |15 23 9 1|
|31 15 7 3 1 ||0 15 7 3 1||0 0 7 3 1| |... |
|... ||... ||... | |... | - _Peter Bala_, Jul 22 2014
-
# Uses function PMatrix from A357368. Adds column 1, 0, 0, ... to the left.
PMatrix(10, n -> 2^n - 1); # Peter Luschny, Oct 09 2022
-
With[{n = 9}, DeleteCases[#, 0] & /@ CoefficientList[Series[1/(1 - (3 + y) x + 2 x^2), {x, 0, n}, {y, 0, n}], {x, y}]] // Flatten (* Michael De Vlieger, Apr 25 2018 *)
A191897
Coefficients of the Z(n,x) polynomials; Z(0,x) = 1, Z(1,x) = x and Z(n,x) = x*Z(n-1,x) - 2*Z(n-2,x), n >= 2.
Original entry on oeis.org
1, 1, 0, 1, 0, -2, 1, 0, -4, 0, 1, 0, -6, 0, 4, 1, 0, -8, 0, 12, 0, 1, 0, -10, 0, 24, 0, -8, 1, 0, -12, 0, 40, 0, -32, 0, 1, 0, -14, 0, 60, 0, -80, 0, 16, 1, 0, -16, 0, 84, 0, -160, 0, 80, 0, 1, 0, -18, 0, 112, 0, -280, 0, 240, 0, -32
Offset: 0
The first few rows of the coefficients of the Z(n,x) are
1;
1, 0;
1, 0, -2;
1, 0, -4, 0;
1, 0, -6, 0, 4;
1, 0, -8, 0, 12, 0;
1, 0, -10, 0, 24, 0, -8;
1, 0, -12, 0, 40, 0, -32, 0;
1, 0, -14, 0, 60, 0, -80, 0, 16;
1, 0, -16, 0, 84, 0, -160, 0, 80, 0;
Row sum without sign:
A113405(n+1).
-
nmax:=10: Z(0, x):=1 : Z(1, x):=x: for n from 2 to nmax do Z(n, x) := x*Z(n-1, x) - 2*Z(n-2, x) od: for n from 0 to nmax do for k from 0 to n do T(n, k) := coeff(Z(n, x), x, n-k) od: od: seq(seq(T(n, k), k=0..n), n=0..nmax); # Johannes W. Meijer, Jun 27 2011, revised Nov 29 2012
-
a[n_, k_] := If[OddQ[k], 0, 2^(k/2)*Coefficient[ ChebyshevU[n, x/2], x, n-k]]; Flatten[ Table[ a[n, k], {n, 0, 10}, {k, 0, n}]] (* Jean-François Alcover, Aug 02 2012, from 2nd formula *)
Showing 1-4 of 4 results.
Comments