cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 36 results. Next

A207538 Triangle of coefficients of polynomials v(n,x) jointly generated with A207537; see Formula section.

Original entry on oeis.org

1, 2, 4, 1, 8, 4, 16, 12, 1, 32, 32, 6, 64, 80, 24, 1, 128, 192, 80, 8, 256, 448, 240, 40, 1, 512, 1024, 672, 160, 10, 1024, 2304, 1792, 560, 60, 1, 2048, 5120, 4608, 1792, 280, 12, 4096, 11264, 11520, 5376, 1120, 84, 1, 8192, 24576, 28160, 15360
Offset: 1

Views

Author

Clark Kimberling, Feb 18 2012

Keywords

Comments

As triangle T(n,k) with 0<=k<=n and with zeros omitted, it is the triangle given by (2, 0, 0, 0, 0, 0, 0, 0, 0, 0, ...) DELTA (0, 1/2, -1/2, 0, 0, 0, 0, 0, 0, 0, ...) where DELTA is the operator defined in A084938. - Philippe Deléham, Mar 04 2012
The numbers in rows of the triangle are along "first layer" skew diagonals pointing top-left in center-justified triangle given in A013609 ((1+2*x)^n) and along (first layer) skew diagonals pointing top-right in center-justified triangle given in A038207 ((2+x)^n), see links. - Zagros Lalo, Jul 31 2018
If s(n) is the row sum at n, then the ratio s(n)/s(n-1) is approximately 2.414213562373095... (A014176: Decimal expansion of the silver mean, 1+sqrt(2)), when n approaches infinity. - Zagros Lalo, Jul 31 2018

Examples

			First seven rows:
1
2
4...1
8...4
16..12..1
32..32..6
64..80..24..1
(2, 0, 0, 0, 0, ...) DELTA (0, 1/2, -1/2, 0, 0, 0, ...) begins:
    1
    2,   0
    4,   1,  0
    8,   4,  0, 0
   16,  12,  1, 0, 0
   32,  32,  6, 0, 0, 0
   64,  80, 24, 1, 0, 0, 0
  128, 192, 80, 8, 0, 0, 0, 0
		

References

  • Shara Lalo and Zagros Lalo, Polynomial Expansion Theorems and Number Triangles, Zana Publishing, 2018, ISBN: 978-1-9995914-0-3, pp. 80-83, 357-358.

Crossrefs

Programs

  • Mathematica
    u[1, x_] := 1; v[1, x_] := 1; z = 16;
    u[n_, x_] := u[n - 1, x] + (x + 1)*v[n - 1, x]
    v[n_, x_] := u[n - 1, x] + v[n - 1, x]
    Table[Factor[u[n, x]], {n, 1, z}]
    Table[Factor[v[n, x]], {n, 1, z}]
    cu = Table[CoefficientList[u[n, x], x], {n, 1, z}];
    TableForm[cu]
    Flatten[%]  (* A207537, |A028297| *)
    Table[Expand[v[n, x]], {n, 1, z}]
    cv = Table[CoefficientList[v[n, x], x], {n, 1, z}];
    TableForm[cv]
    Flatten[%]  (* A207538, |A133156| *)
    t[0, 0] = 1; t[n_, k_] := t[n, k] = If[n < 0 || k < 0, 0, 2 t[n - 1, k] + t[n - 2, k - 1]]; Table[t[n, k], {n, 0, 15}, {k, 0, Floor[n/2]}] // Flatten (* Zagros Lalo, Jul 31 2018 *)
    t[n_, k_] := t[n, k] = 2^(n - 2 k) * (n -  k)!/((n - 2 k)! k!) ; Table[t[n, k], {n, 0, 15}, {k, 0, Floor[n/2]} ]  // Flatten (* Zagros Lalo, Jul 31 2018 *)

Formula

u(n,x) = u(n-1,x)+(x+1)*v(n-1,x), v(n,x) = u(n-1,x)+v(n-1,x), where u(1,x) = 1, v(1,x) = 1. Also, A207538 = |A133156|.
From Philippe Deléham, Mar 04 2012: (Start)
With 0<=k<=n:
Mirror image of triangle in A099089.
Skew version of A038207.
Riordan array (1/(1-2*x), x^2/(1-2*x)).
G.f.: 1/(1-2*x-y*x^2).
Sum_{k, 0<=k<=n} T(n,k)*x^k = A190958(n+1), A127357(n), A090591(n), A089181(n+1), A088139(n+1), A045873(n+1), A088138(n+1), A088137(n+1), A099087(n), A000027(n+1), A000079(n), A000129(n+1), A002605(n+1), A015518(n+1), A063727(n), A002532(n+1), A083099(n+1), A015519(n+1), A003683(n+1), A002534(n+1), A083102(n), A015520(n+1), A091914(n) for x = -10, -9, -8, -7, -6, -5, -4, -3, -2, -1, 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12 respectively.
T(n,k) = 2*T(n-1,k) + T(-2,k-1) with T(0,0) = 1, T(1,0) = 2, T(1,1) = 0 and T(n, k) = 0 if k<0 or if k>n. (End)
T(n,k) = A013609(n-k, n-2*k+1). - Johannes W. Meijer, Sep 05 2013
From Tom Copeland, Feb 11 2016: (Start)
A053117 is a reflected, aerated and signed version of this entry. This entry belongs to a family discussed in A097610 with parameters h1 = -2 and h2 = -y.
Shifted o.g.f.: G(x,t) = x / (1 - 2 x - t x^2).
The compositional inverse of G(x,t) is Ginv(x,t) = -[(1 + 2x) - sqrt[(1+2x)^2 + 4t x^2]] / (2tx) = x - 2 x^2 + (4-t) x^3 - (8-6t) x^4 + ..., a shifted o.g.f. for A091894 (mod signs with A091894(0,0) = 0).
(End)

A138395 a(n) = 6*a(n-1) - 3*a(n-2), a(1) = 1, a(2) = 6.

Original entry on oeis.org

1, 6, 33, 180, 981, 5346, 29133, 158760, 865161, 4714686, 25692633, 140011740, 762992541, 4157920026, 22658542533, 123477495120, 672889343121, 3666903573366, 19982753410833, 108895809744900, 593426598236901, 3233872160186706, 17622953166409533
Offset: 1

Views

Author

Gary W. Adamson, Mar 19 2008

Keywords

Comments

a(n) equals the number of words of length n-1 over {0,1,2,3,4,5} avoiding 01, 02 and 03. - Milan Janjic, Dec 17 2015

Examples

			a(5) = 981 = 6*a(4) - 3*a(3) = 6*180 - 3*33.
		

Crossrefs

Programs

  • Magma
    I:=[1,6]; [n le 2 select I[n] else 6*Self(n-1)-3*Self(n-2): n in [1..30]]; // Vincenzo Librandi, Dec 17 2015
    
  • Mathematica
    a[n_]:=(MatrixPower[{{1,2},{1,5}},n].{{1},{1}})[[2,1]]; Table[a[n],{n,0,40}] (* Vladimir Joseph Stephan Orlovsky, Feb 19 2010 *)
    LinearRecurrence[{6,-3},{1,6},30] (* Harvey P. Dale, Jan 18 2012 *)
  • PARI
    Vec(1/(1-6*x+3*x^2) + O(x^100)) \\ Altug Alkan, Dec 17 2015
    
  • SageMath
    A138395=BinaryRecurrenceSequence(6,-3,0,1)
    [A138395(n) for n in range(1,30)] # G. C. Greubel, Jan 10 2024

Formula

Limit_{n->oo} a(n)/a(n-1) = 3 + sqrt(6) = 5.44948974...
a(n) = ((3+sqrt(6))^n - (3-sqrt(6))^n)/(2*sqrt(6)). - Alexander R. Povolotsky, Apr 01 2008
a(n) = lower left term of n-th power of 2 X 2 matrix [1,2; 1,5].
G.f.: 1/(1 - 6*x + 3*x^2). - Philippe Deléham, Sep 09 2009
a(n) = Chebyshev_U(n, sqrt(3))*(sqrt(3))^n. - Paul Barry, Sep 28 2009

Extensions

More terms from Philippe Deléham, Sep 09 2009
a(21) and first formula corrected by Klaus Brockhaus, Oct 05 2009
Extended by T. D. Noe, May 23 2011

A190984 a(n) = 9*a(n-1) - 7*a(n-2), with a(0)=0, a(1)=1.

Original entry on oeis.org

0, 1, 9, 74, 603, 4909, 39960, 325277, 2647773, 21553018, 175442751, 1428113633, 11624923440, 94627515529, 770273175681, 6270065972426, 51038681522067, 415457671891621, 3381848276370120, 27528430784089733, 224082939122216757, 1824047436611322682
Offset: 0

Views

Author

Keywords

Crossrefs

Cf. A190958 (index to generalized Fibonacci sequences).

Programs

  • Magma
    [Round(7^((n-1)/2)*Evaluate(ChebyshevU(n), 9/(2*Sqrt(7)))): n in [0..30]]; // G. C. Greubel, Aug 26 2022
    
  • Mathematica
    LinearRecurrence[{9,-7}, {0,1}, 50]
  • SageMath
    A190984 = BinaryRecurrenceSequence(9,-7,0,1)
    [A190984(n) for n in (0..30)] # G. C. Greubel, Aug 26 2022

Formula

G.f.: x/(1-9*x+7*x^2). - Philippe Deléham, Oct 12 2011
E.g.f.: (2/sqrt(53))*exp(9*x/2)*sinh(sqrt(53)*x/2). - G. C. Greubel, Aug 26 2022

A190970 a(n) = 5*a(n-1) - 9*a(n-2), with a(0)=0, a(1)=1.

Original entry on oeis.org

0, 1, 5, 16, 35, 31, -160, -1079, -3955, -10064, -14725, 16951, 217280, 933841, 2713685, 5163856, 1396115, -39494129, -210035680, -694731239, -1583335075, -1664094224, 5929544555, 44624570791, 169756952960, 447163627681, 708005561765, -484444840304
Offset: 0

Views

Author

Keywords

Crossrefs

Cf. A190958 (index to generalized Fibonacci sequences).

Programs

  • Magma
    [n le 2 select n-1 else 5*Self(n-1) - 9*Self(n-2): n in [1..51]]; // G. C. Greubel, Jun 09 2022
    
  • Maple
    A190970 := proc(n)
        option remember ;
        if n <= 1 then
            n;
        else
            5*procname(n-1)-9*procname(n-2) ;
        end if;
    end proc: # R. J. Mathar, Mar 23 2023
  • Mathematica
    LinearRecurrence[{5,-9}, {0,1}, 50]
  • Sage
    [3^(n-1)*chebyshev_U(n-1, 5/6) for n in (0..50)] # G. C. Greubel, Jun 09 2022

Formula

G.f.: x/(1 - 5*x + 9*x^2). - Philippe Deléham, Oct 12 2011
a(n) = 3^(n-1) * ChebyshevU(n-1, 5/6). - G. C. Greubel, Jun 09 2022

A190972 a(n) = 7*a(n-1) - 3*a(n-2), with a(0)=0, a(1)=1.

Original entry on oeis.org

0, 1, 7, 46, 301, 1969, 12880, 84253, 551131, 3605158, 23582713, 154263517, 1009096480, 6600884809, 43178904223, 282449675134, 1847611013269, 12085928067481, 79058663432560, 517152859825477, 3382894028480659, 22128799619888182, 144752915253775297
Offset: 0

Views

Author

Keywords

Comments

a(n+1) equals the number of words of length n over {0,1,2,3,4,5,6} avoiding 01, 02 and 03. - Milan Janjic, Dec 17 2015

Crossrefs

Cf. A190958 (index to generalized Fibonacci sequences).

Programs

  • Magma
    I:=[0,1]; [n le 2 select I[n] else 7*Self(n-1)-3*Self(n-2): n in [1..30]]; // Vincenzo Librandi, Dec 17 2015
    
  • Mathematica
    LinearRecurrence[{7,-3}, {0,1}, 50]
  • PARI
    concat(0, Vec(x/(1-7*x+3*x^2) + O(x^100))) \\ Altug Alkan, Dec 18 2015

Formula

a(n) = ((7/2 + 1/2*sqrt(37))^n - (7/2 - 1/2*sqrt(37))^n)/sqrt(37). - Giorgio Balzarotti, May 28 2011
G.f.: x/(1 - 7x + 3*x^2). - Philippe Deléham, Oct 12 2011
E.g.f.: (2/sqrt(37))*exp(7*x/2)*sinh(sqrt(37)*x/2). - G. C. Greubel, Dec 18 2015

A190974 a(n) = 7*a(n-1) - 5*a(n-2), with a(0)=0, a(1)=1.

Original entry on oeis.org

0, 1, 7, 44, 273, 1691, 10472, 64849, 401583, 2486836, 15399937, 95365379, 590557968, 3657078881, 22646762327, 140241941884, 868459781553, 5378008761451, 33303762422392, 206236293149489, 1277135239934463, 7908765213793796, 48975680296884257
Offset: 0

Views

Author

Keywords

Crossrefs

Cf. A190958 (index to generalized Fibonacci sequences).

Programs

  • Magma
    [n le 2 select n-1 else 7*Self(n-1) - 5*Self(n-2): n in [1..51]]; // G. C. Greubel, Jun 11 2022
    
  • Mathematica
    LinearRecurrence[{7,-5}, {0,1}, 50]
  • SageMath
    [lucas_number1(n,7,5) for n in (0..50)] # G. C. Greubel, Jun 11 2022

Formula

a(n) = ((7/2 + 1/2*sqrt(29))^n - (7/2 - 1/2*sqrt(29))^n)/sqrt(29). - Giorgio Balzarotti, May 28 2011
G.f.: x/(1 - 7*x + 5*x^2). - Philippe Deléham, Oct 12 2011
From G. C. Greubel, Jun 11 2022: (Start)
a(n) = 5^((n-1)/2)*ChebyshevU(n-1, 7/(2*sqrt(5))).
E.g.f.: (2/sqrt(29))*exp(7*x/2)*sinh(sqrt(29)*x/2). (End)

A190978 a(n) = 8*a(n-1) - 6*a(n-2), with a(0)=0, a(1)=1.

Original entry on oeis.org

0, 1, 8, 58, 416, 2980, 21344, 152872, 1094912, 7842064, 56167040, 402283936, 2881269248, 20636450368, 147803987456, 1058613197440, 7582081654784, 54304974053632, 388947302500352, 2785748575681024, 19952304790446080, 142903946869482496, 1023517746213183488
Offset: 0

Views

Author

Keywords

Crossrefs

Cf. A190958 (index to generalized Fibonacci sequences).

Programs

  • Magma
    [n le 2 select n-1 else 8*Self(n-1) -6*Self(n-2): n in [1..41]]; // G. C. Greubel, Jun 17 2022
    
  • Mathematica
    LinearRecurrence[{8,-6}, {0,1}, 50]
    CoefficientList[Series[x/(1-8x+6x^2),{x,0,30}],x] (* Harvey P. Dale, Aug 03 2021 *)
  • SageMath
    [sum( (-1)^k*binomial(n-k-1, k)*6^k*8^(n-2*k-1) for k in (0..((n-1)//2))) for n in (0..40)] # G. C. Greubel, Jun 17 2022

Formula

a(n) = ((4 + sqrt(10))^n - (4 - sqrt(10))^n)/(2*sqrt(10)). - Giorgio Balzarotti, May 28 2011
G.f.: x/(1 - 8*x + 6*x^2). - Philippe Deléham, Oct 12 2011
From G. C. Greubel, Jun 17 2022: (Start)
a(n) = 6^((n-1)/2)*ChebyshevU(n-1, 4/sqrt(6)).
E.g.f.: (1/sqrt(10))*exp(4*x)*sinh(sqrt(10)*x). (End)

A190990 a(n) = 10*a(n-1) - 8*a(n-2), with a(0)=0, a(1)=1.

Original entry on oeis.org

0, 1, 10, 92, 840, 7664, 69920, 637888, 5819520, 53092096, 484364800, 4418911232, 40314193920, 367790649344, 3355392942080, 30611604226048, 279272898723840, 2547836153430016, 23244178344509440, 212059094217654272, 1934637515420467200, 17649902400463437824
Offset: 0

Views

Author

Keywords

Crossrefs

Cf. A190958 (index to generalized Fibonacci sequences)

Programs

  • Magma
    [Round(2^(3*(n-1)/2)*Evaluate(ChebyshevU(n), 5/(2*Sqrt(2)))): n in [0..30]]; // G. C. Greubel, Sep 15 2022
    
  • Mathematica
    LinearRecurrence[{10,-8}, {0,1}, 50]
  • SageMath
    A190990 = BinaryRecurrenceSequence(10, -8, 0, 1)
    [A190990(n) for n in (0..30)] # G. C. Greubel, Sep 15 2022

Formula

G.f.: x / ( 1-10*x+8*x^2 ). - R. J. Mathar, May 26 2011
E.g.f.: (1/sqrt(17))*exp(5*x)*sinh(sqrt(17)*x). - G. C. Greubel, Sep 15 2022

A190960 a(n) = 3*a(n-1) - 6*a(n-2), with a(0)=0, a(1)=1.

Original entry on oeis.org

0, 1, 3, 3, -9, -45, -81, 27, 567, 1539, 1215, -5589, -24057, -38637, 28431, 317115, 780759, 439587, -3365793, -12734901, -18009945, 22379571, 175198383, 391317723, 122762871, -1979617725, -6675430401, -8148584853, 15606827847, 95711992659, 193495010895
Offset: 0

Views

Author

Keywords

Crossrefs

Cf. A190958 (index to generalized Fibonacci sequences).

Programs

  • Magma
    I:=[0,1]; [n le 2 select I[n] else 3*Self(n-1) - 6*Self(n-2): n in [1..30]]; // G. C. Greubel, Jan 25 2018
  • Mathematica
    LinearRecurrence[{3,-6}, {0,1}, 50]
  • PARI
    x='x+O('x^30); concat([0], Vec(x/(1-3*x+6*x^2))) \\ G. C. Greubel, Jan 25 2018
    

Formula

G.f.: x/(1-3*x+6*x^2). - Philippe Deléham, Oct 11 2011
a(n) = (i/sqrt(15))*((3/2 - i*sqrt(15)/2)^n - (3/2 + i*sqrt(15)/2)^n), where i=sqrt(-1). - Taras Goy, Jan 04 2025
E.g.f.: 2*exp(3*x/2)*sin(sqrt(15)*x/2)/sqrt(15). - Stefano Spezia, Jan 05 2025

A190965 a(n) = 4*a(n-1) - 6*a(n-2), with a(0)=0, a(1)=1.

Original entry on oeis.org

0, 1, 4, 10, 16, 4, -80, -344, -896, -1520, -704, 6304, 29440, 79936, 143104, 92800, -487424, -2506496, -7101440, -13366784, -10858496, 36766720, 212217856, 628271104, 1239777280, 1189482496, -2680733696, -17859829760, -55354916864, -114260688896
Offset: 0

Views

Author

Keywords

Comments

For the quaternion Q = 2+j+k, Q^n = r(n) + a(n)*(j+k). The sequence of real-parts r(n) is A266046. - Stanislav Sykora, Dec 20 2015

Crossrefs

Cf. A190958 (index to generalized Fibonacci sequences).
Cf. A088137 (Inv. Bin. Trans.), A168175, A213421, A266046.

Programs

  • Magma
    [n le 2 select n-1 else 4*Self(n-1) -6*Self(n-2): n in [1..41]]; // G. C. Greubel, Jan 10 2024
    
  • Maple
    w := I*sqrt(2): a := n -> (w/4)*((2 - w)^n - (2 + w)^n):
    seq(simplify(a(n)), n = 0..20);  # (after Taras Goy), Peter Luschny, Jan 03 2025
  • Mathematica
    LinearRecurrence[{4,-6}, {0,1}, 50]
  • PARI
    a(n)=([0,1;0,0]*[0,-6;1,4]^n)[1,1] \\ Charles R Greathouse IV, May 31 2011
    
  • SageMath
    A190965=BinaryRecurrenceSequence(4,-6,0,1)
    [A190965(n) for n in range(41)] # G. C. Greubel, Jan 10 2024

Formula

G.f.: x/(1-4*x+6*x^2). - Philippe Deléham, Oct 12 2011
2*a(n)^2 + A266046(n)^2 = 6^n. - Stanislav Sykora, Dec 20 2015
From G. C. Greubel, Jan 10 2024: (Start)
a(n) = 6^((n-1)/2)*ChebyshevU(n-1, sqrt(2/3)).
E.g.f.: (1/sqrt(2))*exp(2*x)*sin(sqrt(2)*x). (End)
a(n) = (i*sqrt(2)/4)*((2 - i*sqrt(2))^n - (2 + i*sqrt(2))^n), where i = sqrt(-1). - Taras Goy, Jan 03 2025
Showing 1-10 of 36 results. Next