A207538
Triangle of coefficients of polynomials v(n,x) jointly generated with A207537; see Formula section.
Original entry on oeis.org
1, 2, 4, 1, 8, 4, 16, 12, 1, 32, 32, 6, 64, 80, 24, 1, 128, 192, 80, 8, 256, 448, 240, 40, 1, 512, 1024, 672, 160, 10, 1024, 2304, 1792, 560, 60, 1, 2048, 5120, 4608, 1792, 280, 12, 4096, 11264, 11520, 5376, 1120, 84, 1, 8192, 24576, 28160, 15360
Offset: 1
First seven rows:
1
2
4...1
8...4
16..12..1
32..32..6
64..80..24..1
(2, 0, 0, 0, 0, ...) DELTA (0, 1/2, -1/2, 0, 0, 0, ...) begins:
1
2, 0
4, 1, 0
8, 4, 0, 0
16, 12, 1, 0, 0
32, 32, 6, 0, 0, 0
64, 80, 24, 1, 0, 0, 0
128, 192, 80, 8, 0, 0, 0, 0
- Shara Lalo and Zagros Lalo, Polynomial Expansion Theorems and Number Triangles, Zana Publishing, 2018, ISBN: 978-1-9995914-0-3, pp. 80-83, 357-358.
-
u[1, x_] := 1; v[1, x_] := 1; z = 16;
u[n_, x_] := u[n - 1, x] + (x + 1)*v[n - 1, x]
v[n_, x_] := u[n - 1, x] + v[n - 1, x]
Table[Factor[u[n, x]], {n, 1, z}]
Table[Factor[v[n, x]], {n, 1, z}]
cu = Table[CoefficientList[u[n, x], x], {n, 1, z}];
TableForm[cu]
Flatten[%] (* A207537, |A028297| *)
Table[Expand[v[n, x]], {n, 1, z}]
cv = Table[CoefficientList[v[n, x], x], {n, 1, z}];
TableForm[cv]
Flatten[%] (* A207538, |A133156| *)
t[0, 0] = 1; t[n_, k_] := t[n, k] = If[n < 0 || k < 0, 0, 2 t[n - 1, k] + t[n - 2, k - 1]]; Table[t[n, k], {n, 0, 15}, {k, 0, Floor[n/2]}] // Flatten (* Zagros Lalo, Jul 31 2018 *)
t[n_, k_] := t[n, k] = 2^(n - 2 k) * (n - k)!/((n - 2 k)! k!) ; Table[t[n, k], {n, 0, 15}, {k, 0, Floor[n/2]} ] // Flatten (* Zagros Lalo, Jul 31 2018 *)
A138395
a(n) = 6*a(n-1) - 3*a(n-2), a(1) = 1, a(2) = 6.
Original entry on oeis.org
1, 6, 33, 180, 981, 5346, 29133, 158760, 865161, 4714686, 25692633, 140011740, 762992541, 4157920026, 22658542533, 123477495120, 672889343121, 3666903573366, 19982753410833, 108895809744900, 593426598236901, 3233872160186706, 17622953166409533
Offset: 1
a(5) = 981 = 6*a(4) - 3*a(3) = 6*180 - 3*33.
-
I:=[1,6]; [n le 2 select I[n] else 6*Self(n-1)-3*Self(n-2): n in [1..30]]; // Vincenzo Librandi, Dec 17 2015
-
a[n_]:=(MatrixPower[{{1,2},{1,5}},n].{{1},{1}})[[2,1]]; Table[a[n],{n,0,40}] (* Vladimir Joseph Stephan Orlovsky, Feb 19 2010 *)
LinearRecurrence[{6,-3},{1,6},30] (* Harvey P. Dale, Jan 18 2012 *)
-
Vec(1/(1-6*x+3*x^2) + O(x^100)) \\ Altug Alkan, Dec 17 2015
-
A138395=BinaryRecurrenceSequence(6,-3,0,1)
[A138395(n) for n in range(1,30)] # G. C. Greubel, Jan 10 2024
A190984
a(n) = 9*a(n-1) - 7*a(n-2), with a(0)=0, a(1)=1.
Original entry on oeis.org
0, 1, 9, 74, 603, 4909, 39960, 325277, 2647773, 21553018, 175442751, 1428113633, 11624923440, 94627515529, 770273175681, 6270065972426, 51038681522067, 415457671891621, 3381848276370120, 27528430784089733, 224082939122216757, 1824047436611322682
Offset: 0
Cf.
A190958 (index to generalized Fibonacci sequences).
-
[Round(7^((n-1)/2)*Evaluate(ChebyshevU(n), 9/(2*Sqrt(7)))): n in [0..30]]; // G. C. Greubel, Aug 26 2022
-
LinearRecurrence[{9,-7}, {0,1}, 50]
-
A190984 = BinaryRecurrenceSequence(9,-7,0,1)
[A190984(n) for n in (0..30)] # G. C. Greubel, Aug 26 2022
A190970
a(n) = 5*a(n-1) - 9*a(n-2), with a(0)=0, a(1)=1.
Original entry on oeis.org
0, 1, 5, 16, 35, 31, -160, -1079, -3955, -10064, -14725, 16951, 217280, 933841, 2713685, 5163856, 1396115, -39494129, -210035680, -694731239, -1583335075, -1664094224, 5929544555, 44624570791, 169756952960, 447163627681, 708005561765, -484444840304
Offset: 0
Cf.
A190958 (index to generalized Fibonacci sequences).
-
[n le 2 select n-1 else 5*Self(n-1) - 9*Self(n-2): n in [1..51]]; // G. C. Greubel, Jun 09 2022
-
A190970 := proc(n)
option remember ;
if n <= 1 then
n;
else
5*procname(n-1)-9*procname(n-2) ;
end if;
end proc: # R. J. Mathar, Mar 23 2023
-
LinearRecurrence[{5,-9}, {0,1}, 50]
-
[3^(n-1)*chebyshev_U(n-1, 5/6) for n in (0..50)] # G. C. Greubel, Jun 09 2022
A190972
a(n) = 7*a(n-1) - 3*a(n-2), with a(0)=0, a(1)=1.
Original entry on oeis.org
0, 1, 7, 46, 301, 1969, 12880, 84253, 551131, 3605158, 23582713, 154263517, 1009096480, 6600884809, 43178904223, 282449675134, 1847611013269, 12085928067481, 79058663432560, 517152859825477, 3382894028480659, 22128799619888182, 144752915253775297
Offset: 0
Cf.
A190958 (index to generalized Fibonacci sequences).
-
I:=[0,1]; [n le 2 select I[n] else 7*Self(n-1)-3*Self(n-2): n in [1..30]]; // Vincenzo Librandi, Dec 17 2015
-
LinearRecurrence[{7,-3}, {0,1}, 50]
-
concat(0, Vec(x/(1-7*x+3*x^2) + O(x^100))) \\ Altug Alkan, Dec 18 2015
A190974
a(n) = 7*a(n-1) - 5*a(n-2), with a(0)=0, a(1)=1.
Original entry on oeis.org
0, 1, 7, 44, 273, 1691, 10472, 64849, 401583, 2486836, 15399937, 95365379, 590557968, 3657078881, 22646762327, 140241941884, 868459781553, 5378008761451, 33303762422392, 206236293149489, 1277135239934463, 7908765213793796, 48975680296884257
Offset: 0
Cf.
A190958 (index to generalized Fibonacci sequences).
-
[n le 2 select n-1 else 7*Self(n-1) - 5*Self(n-2): n in [1..51]]; // G. C. Greubel, Jun 11 2022
-
LinearRecurrence[{7,-5}, {0,1}, 50]
-
[lucas_number1(n,7,5) for n in (0..50)] # G. C. Greubel, Jun 11 2022
A190978
a(n) = 8*a(n-1) - 6*a(n-2), with a(0)=0, a(1)=1.
Original entry on oeis.org
0, 1, 8, 58, 416, 2980, 21344, 152872, 1094912, 7842064, 56167040, 402283936, 2881269248, 20636450368, 147803987456, 1058613197440, 7582081654784, 54304974053632, 388947302500352, 2785748575681024, 19952304790446080, 142903946869482496, 1023517746213183488
Offset: 0
- G. C. Greubel, Table of n, a(n) for n = 0..1000
- Pamela Fleischmann, Jonas Höfer, Annika Huch, and Dirk Nowotka, alpha-beta-Factorization and the Binary Case of Simon's Congruence, arXiv:2306.14192 [math.CO], 2023.
- Index entries for linear recurrences with constant coefficients, signature (8,-6).
Cf.
A190958 (index to generalized Fibonacci sequences).
-
[n le 2 select n-1 else 8*Self(n-1) -6*Self(n-2): n in [1..41]]; // G. C. Greubel, Jun 17 2022
-
LinearRecurrence[{8,-6}, {0,1}, 50]
CoefficientList[Series[x/(1-8x+6x^2),{x,0,30}],x] (* Harvey P. Dale, Aug 03 2021 *)
-
[sum( (-1)^k*binomial(n-k-1, k)*6^k*8^(n-2*k-1) for k in (0..((n-1)//2))) for n in (0..40)] # G. C. Greubel, Jun 17 2022
A190990
a(n) = 10*a(n-1) - 8*a(n-2), with a(0)=0, a(1)=1.
Original entry on oeis.org
0, 1, 10, 92, 840, 7664, 69920, 637888, 5819520, 53092096, 484364800, 4418911232, 40314193920, 367790649344, 3355392942080, 30611604226048, 279272898723840, 2547836153430016, 23244178344509440, 212059094217654272, 1934637515420467200, 17649902400463437824
Offset: 0
Cf.
A190958 (index to generalized Fibonacci sequences)
-
[Round(2^(3*(n-1)/2)*Evaluate(ChebyshevU(n), 5/(2*Sqrt(2)))): n in [0..30]]; // G. C. Greubel, Sep 15 2022
-
LinearRecurrence[{10,-8}, {0,1}, 50]
-
A190990 = BinaryRecurrenceSequence(10, -8, 0, 1)
[A190990(n) for n in (0..30)] # G. C. Greubel, Sep 15 2022
A190960
a(n) = 3*a(n-1) - 6*a(n-2), with a(0)=0, a(1)=1.
Original entry on oeis.org
0, 1, 3, 3, -9, -45, -81, 27, 567, 1539, 1215, -5589, -24057, -38637, 28431, 317115, 780759, 439587, -3365793, -12734901, -18009945, 22379571, 175198383, 391317723, 122762871, -1979617725, -6675430401, -8148584853, 15606827847, 95711992659, 193495010895
Offset: 0
Cf.
A190958 (index to generalized Fibonacci sequences).
-
I:=[0,1]; [n le 2 select I[n] else 3*Self(n-1) - 6*Self(n-2): n in [1..30]]; // G. C. Greubel, Jan 25 2018
-
LinearRecurrence[{3,-6}, {0,1}, 50]
-
x='x+O('x^30); concat([0], Vec(x/(1-3*x+6*x^2))) \\ G. C. Greubel, Jan 25 2018
A190965
a(n) = 4*a(n-1) - 6*a(n-2), with a(0)=0, a(1)=1.
Original entry on oeis.org
0, 1, 4, 10, 16, 4, -80, -344, -896, -1520, -704, 6304, 29440, 79936, 143104, 92800, -487424, -2506496, -7101440, -13366784, -10858496, 36766720, 212217856, 628271104, 1239777280, 1189482496, -2680733696, -17859829760, -55354916864, -114260688896
Offset: 0
- Stanislav Sykora, Table of n, a(n) for n = 0..1000
- Beata Bajorska-Harapińska, Barbara Smoleń, and Roman Wituła, On Quaternion Equivalents for Quasi-Fibonacci Numbers, Shortly Quaternaccis, Advances in Applied Clifford Algebras (2019) Vol. 29, 54.
- Index entries for linear recurrences with constant coefficients, signature (4,-6).
Cf.
A190958 (index to generalized Fibonacci sequences).
-
[n le 2 select n-1 else 4*Self(n-1) -6*Self(n-2): n in [1..41]]; // G. C. Greubel, Jan 10 2024
-
w := I*sqrt(2): a := n -> (w/4)*((2 - w)^n - (2 + w)^n):
seq(simplify(a(n)), n = 0..20); # (after Taras Goy), Peter Luschny, Jan 03 2025
-
LinearRecurrence[{4,-6}, {0,1}, 50]
-
a(n)=([0,1;0,0]*[0,-6;1,4]^n)[1,1] \\ Charles R Greathouse IV, May 31 2011
-
A190965=BinaryRecurrenceSequence(4,-6,0,1)
[A190965(n) for n in range(41)] # G. C. Greubel, Jan 10 2024
Showing 1-10 of 36 results.
Comments