cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-5 of 5 results.

A190958 a(n) = 2*a(n-1) - 10*a(n-2), with a(0) = 0, a(1) = 1.

Original entry on oeis.org

0, 1, 2, -6, -32, -4, 312, 664, -1792, -10224, -2528, 97184, 219648, -532544, -3261568, -1197696, 30220288, 72417536, -157367808, -1038910976, -504143872, 9380822016, 23803082752, -46202054656, -330434936832, -198849327104, 2906650714112, 7801794699264
Offset: 0

Views

Author

Keywords

Comments

For the difference equation a(n) = c*a(n-1) - d*a(n-2), with a(0) = 0, a(1) = 1, the solution is a(n) = d^((n-1)/2) * ChebyshevU(n-1, c/(2*sqrt(d))) and has the alternate form a(n) = ( ((c + sqrt(c^2 - 4*d))/2)^n - ((c - sqrt(c^2 - 4*d))/2)^n )/sqrt(c^2 - 4*d). In the case c^2 = 4*d then the solution is a(n) = n*d^((n-1)/2). The generating function is x/(1 - c*x + d^2) and the exponential generating function takes the form (2/sqrt(c^2 - 4*d))*exp(c*x/2)*sinh(sqrt(c^2 - 4*d)*x/2) for c^2 > 4*d, (2/sqrt(4*d - c^2))*exp(c*x/2)*sin(sqrt(4*d - c^2)*x/2) for 4*d > c^2, and x*exp(sqrt(d)*x) if c^2 = 4*d. - G. C. Greubel, Jun 10 2022

Crossrefs

Programs

  • Magma
    I:=[0,1]; [n le 2 select I[n] else 2*Self(n-1)-10*Self(n-2): n in [1..30]]; // Vincenzo Librandi, Sep 17 2011
    
  • Mathematica
    LinearRecurrence[{2,-10}, {0,1}, 50]
  • PARI
    a(n)=([0,1; -10,2]^n*[0;1])[1,1] \\ Charles R Greathouse IV, Apr 08 2016
    
  • SageMath
    [lucas_number1(n,2,10) for n in (0..50)] # G. C. Greubel, Jun 10 2022

Formula

G.f.: x / ( 1 - 2*x + 10*x^2 ). - R. J. Mathar, Jun 01 2011
E.g.f.: (1/3)*exp(x)*sin(3*x). - Franck Maminirina Ramaharo, Nov 13 2018
a(n) = 10^((n-1)/2) * ChebyshevU(n-1, 1/sqrt(10)). - G. C. Greubel, Jun 10 2022
a(n) = (1/3)*10^(n/2)*sin(n*arctan(3)) = Sum_{k=0..floor(n/2)} (-1)^k*3^(2*k)*binomial(n,2*k+1). - Gerry Martens, Oct 15 2022

A368150 Triangular array T(n,k), read by rows: coefficients of strong divisibility sequence of polynomials p(1,x) = 1, p(2,x) = 1 + 3*x, p(n,x) = u*p(n-1,x) + v*p(n-2,x) for n >= 3, where u = p(2,x), v = 1 - x^2.

Original entry on oeis.org

1, 1, 3, 2, 6, 8, 3, 15, 25, 21, 5, 30, 76, 90, 55, 8, 60, 188, 324, 300, 144, 13, 114, 439, 948, 1251, 954, 377, 21, 213, 961, 2529, 4207, 4527, 2939, 987, 34, 390, 2026, 6246, 12606, 17154, 15646, 8850, 2584, 55, 705, 4136, 14640, 34590, 56970, 65840
Offset: 1

Views

Author

Clark Kimberling, Dec 25 2023

Keywords

Comments

Because (p(n,x)) is a strong divisibility sequence, for each integer k, the sequence (p(n,k)) is a strong divisibility sequence of integers.

Examples

			First eight rows:
   1
   1    3
   2    6    8
   3   15   25    21
   5   30   76    90     55
   8   60  188   324    300   144
  13  114  439   948   1251   954   377
  21  213  961  2529   4207  4527  2939   987
Row 4 represents the polynomial p(4,x) = 3 + 15*x + 25*x^2 + 21*x^3, so (T(4,k)) = (3,15,25,21), k=0..3.
		

Crossrefs

Cf. A000045 (column 1); A001906 (p(n,n-1)); A000302 (row sums), (p(n,1)); A122803 (alternating row sums), (p(n,-1)); A190972 (p(n,2)), A116415, (p(n,-2)); A190990, (p(n,3)); A057084, (p(n,-3)); A094440, A367208, A367209, A367210, A367211, A367297, A367298, A367299, A367300, A367301, A368151.

Programs

  • Mathematica
    p[1, x_] := 1; p[2, x_] := 1 + 3 x; u[x_] := p[2, x]; v[x_] := 1 - x^2;
    p[n_, x_] := Expand[u[x]*p[n - 1, x] + v[x]*p[n - 2, x]]
    Grid[Table[CoefficientList[p[n, x], x], {n, 1, 10}]]
    Flatten[Table[CoefficientList[p[n, x], x], {n, 1, 10}]]

Formula

p(n,x) = u*p(n-1,x) + v*p(n-2,x) for n >= 3, where p(1,x) = 1, p(2,x) = 1 + 3*x, u = p(2,x), and v = 1 - x^2.
p(n,x) = k*(b^n - c^n), where k = -1/sqrt(5 + 6*x + 5*x^2), b = (1/2)*(3*x + 1 - 1/k), c = (1/2)*(3*x + 1 + 1/k).

A368153 Triangular array T(n,k), read by rows: coefficients of strong divisibility sequence of polynomials p(1,x) = 1, p(2,x) = 1 + 2*x, p(n,x) = u*p(n-1,x) + v*p(n-2,x) for n >= 3, where u = p(2,x), v = 1 - 3*x - x^2.

Original entry on oeis.org

1, 1, 2, 2, 1, 3, 3, 4, -2, 4, 5, 5, 4, -10, 5, 8, 10, -3, 4, -25, 6, 13, 16, 1, -29, 14, -49, 7, 21, 28, -8, -24, -78, 56, -84, 8, 34, 47, -12, -88, -26, -162, 168, -132, 9, 55, 80, -31, -140, -200, 100, -330, 408, -195, 10, 89, 135, -58, -301, -230, -296
Offset: 1

Views

Author

Clark Kimberling, Jan 20 2024

Keywords

Comments

Because (p(n,x)) is a strong divisibility sequence, for each integer k, the sequence (p(n,k)) is a strong divisibility sequence of integers.

Examples

			First eight rows:
   1
   1   2
   2   1   3
   3   4  -2    4
   5   5   4  -10    5
   8  10  -3    4  -25    6
  13  16   1  -29   14  -49    7
  21  28  -8  -24  -78   56  -84   8
Row 4 represents the polynomial p(4,x) = 3 + 4*x - 2*x^2 + 4*x^3, so (T(4,k)) = (3,4,-2,4), k=0..3.
		

Crossrefs

Cf. A000045 (column 1); A000027 (p(n,n-1)); A057083 (row sums), (p(n,1)); A182228 (alternating row sums), (p(n,-1)); A190970, (p(n,2)); A030195, (p(n,-2)); A052918, (p(n,-3)); A190972, (p(n,-4)); A057085, (p(n,-5)); A094440, A367208, A367209, A367210, A367211, A367297, A367298, A367299, A367300, A367301, A368150, A368151, A368152.

Programs

  • Mathematica
    p[1, x_] := 1; p[2, x_] := 1 + 2 x; u[x_] := p[2, x]; v[x_] := 1 - 3x - x^2;
    p[n_, x_] := Expand[u[x]*p[n - 1, x] + v[x]*p[n - 2, x]]
    Grid[Table[CoefficientList[p[n, x], x], {n, 1, 10}]]
    Flatten[Table[CoefficientList[p[n, x], x], {n, 1, 10}]]

Formula

p(n,x) = u*p(n-1,x) + v*p(n-2,x) for n >= 3, where p(1,x) = 1, p(2,x) = 1 + 2*x, u = p(2,x), and v = 1 - 3*x - x^2.
p(n,x) = k*(b^n - c^n), where k = -1/sqrt(5 - 8*x), b = (1/2)*(2*x + 1 - 1/k), c = (1/2)*(2*x + 1 + 1/k).

A276288 a(n) = a(n-1) + 3*a(n-2) if n is even, otherwise a(n) = 3*a(n-1) + a(n-2), a(0)=0, a(1)=1.

Original entry on oeis.org

0, 1, 1, 4, 7, 25, 46, 163, 301, 1066, 1969, 6973, 12880, 45613, 84253, 298372, 551131, 1951765, 3605158, 12767239, 23582713, 83515378, 154263517, 546305929, 1009096480, 3573595369, 6600884809, 23376249796, 43178904223, 152912962465, 282449675134, 1000261987867, 1847611013269, 6543095027674
Offset: 0

Views

Author

Ilya Gutkovskiy, Aug 27 2016

Keywords

Crossrefs

Programs

  • Mathematica
    LinearRecurrence[{0, 7, 0, -3}, {0, 1, 1, 4}, 34]
    RecurrenceTable[{a[0] == 0, a[1] == 1, a[n] == (2 - (-1)^n) a[n - 1] + (2 + (-1)^n) a[n - 2]}, a, {n, 33}]
  • PARI
    concat(0, Vec(x*(1+x-3*x^2)/(1-7*x^2+3*x^4) + O(x^99))) \\ Altug Alkan, Aug 27 2016

Formula

G.f.: x*(1 + x - 3*x^2)/(1 - 7*x^2 + 3*x^4).
a(n) = 7*a(n-2) - 3*a(n-4).
a(n) = (2 - (-1)^n)*a(n-1) + (2 + (-1)^n)*a(n-2) for n > 1, a(0)=0, a(1)=1.
a(2k) = A190972(k).

A287813 Number of octonary sequences of length n such that no two consecutive terms have distance 2.

Original entry on oeis.org

1, 8, 52, 340, 2224, 14548, 95164, 622504, 4072036, 26636740, 174241072, 1139777284, 7455717772, 48770692552, 319027694548, 2086881784180, 13651089405616, 89296980486772, 584125595190556, 3820988224873576, 24994540788543364, 163498820845182820
Offset: 0

Views

Author

David Nacin, Jun 02 2017

Keywords

Examples

			For n=2 the a(2) = 64 - 12 = 52 sequences contain every combination except these twelve: 02,20,13,31,24,42,35,53,46,64,57,75.
		

Crossrefs

Programs

  • Mathematica
    LinearRecurrence[{7, -3}, {1, 8, 52}, 40]
  • Python
    def a(n):
     if n in [0, 1, 2]:
      return [1, 8, 52][n]
     return 7*a(n-1)-3*a(n-2)

Formula

For n>2, a(n) = 7*a(n-1) - 3*a(n-2), a(0)=1, a(1)=8, a(2)=52.
G.f.: (1 + x - x^2)/(1 - 7 x + 3 x^2).
a(n) = A190972(n) + A190972(n+1) - A190972(n-1). - R. J. Mathar, Oct 20 2019
Showing 1-5 of 5 results.