cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A190958 a(n) = 2*a(n-1) - 10*a(n-2), with a(0) = 0, a(1) = 1.

Original entry on oeis.org

0, 1, 2, -6, -32, -4, 312, 664, -1792, -10224, -2528, 97184, 219648, -532544, -3261568, -1197696, 30220288, 72417536, -157367808, -1038910976, -504143872, 9380822016, 23803082752, -46202054656, -330434936832, -198849327104, 2906650714112, 7801794699264
Offset: 0

Views

Author

Keywords

Comments

For the difference equation a(n) = c*a(n-1) - d*a(n-2), with a(0) = 0, a(1) = 1, the solution is a(n) = d^((n-1)/2) * ChebyshevU(n-1, c/(2*sqrt(d))) and has the alternate form a(n) = ( ((c + sqrt(c^2 - 4*d))/2)^n - ((c - sqrt(c^2 - 4*d))/2)^n )/sqrt(c^2 - 4*d). In the case c^2 = 4*d then the solution is a(n) = n*d^((n-1)/2). The generating function is x/(1 - c*x + d^2) and the exponential generating function takes the form (2/sqrt(c^2 - 4*d))*exp(c*x/2)*sinh(sqrt(c^2 - 4*d)*x/2) for c^2 > 4*d, (2/sqrt(4*d - c^2))*exp(c*x/2)*sin(sqrt(4*d - c^2)*x/2) for 4*d > c^2, and x*exp(sqrt(d)*x) if c^2 = 4*d. - G. C. Greubel, Jun 10 2022

Crossrefs

Programs

  • Magma
    I:=[0,1]; [n le 2 select I[n] else 2*Self(n-1)-10*Self(n-2): n in [1..30]]; // Vincenzo Librandi, Sep 17 2011
    
  • Mathematica
    LinearRecurrence[{2,-10}, {0,1}, 50]
  • PARI
    a(n)=([0,1; -10,2]^n*[0;1])[1,1] \\ Charles R Greathouse IV, Apr 08 2016
    
  • SageMath
    [lucas_number1(n,2,10) for n in (0..50)] # G. C. Greubel, Jun 10 2022

Formula

G.f.: x / ( 1 - 2*x + 10*x^2 ). - R. J. Mathar, Jun 01 2011
E.g.f.: (1/3)*exp(x)*sin(3*x). - Franck Maminirina Ramaharo, Nov 13 2018
a(n) = 10^((n-1)/2) * ChebyshevU(n-1, 1/sqrt(10)). - G. C. Greubel, Jun 10 2022
a(n) = (1/3)*10^(n/2)*sin(n*arctan(3)) = Sum_{k=0..floor(n/2)} (-1)^k*3^(2*k)*binomial(n,2*k+1). - Gerry Martens, Oct 15 2022

A266046 Real part of Q^n, where Q is the quaternion 2 + j + k.

Original entry on oeis.org

1, 2, 2, -4, -28, -88, -184, -208, 272, 2336, 7712, 16832, 21056, -16768, -193408, -673024, -1531648, -2088448, 836096, 15875072, 58483712, 138684416, 203835392, -16764928, -1290072064, -5059698688, -12498362368, -19635257344, -3550855168, 103608123392
Offset: 0

Views

Author

Stanislav Sykora, Dec 20 2015

Keywords

Comments

In general, given a quaternion Q = r+u*i+v*j+w*k with integer coefficients [r,u,v,w], its powers Q^n = R(n)+U(n)*i+V(n)*j+W(n)*k define four integer sequences R(n),U(n),V(n),W(n). The process can be also transcribed as a four-term, first order recurrence for the elements of the four sequences. Since |Q^n| = |Q|^n, we have, for any n, R(n)^2+U(n)^2+V(n)^2+W(n)^2 = (L^2)^n, where L^2 = r^2+u^2+v^2+w^2 is a constant. The normalized sequence Q^n/L^n describes a unitary quaternion undergoing stepwise rotations by the angle phi = arctan(sqrt(u^2+v^2+w^2)/r). Consequently, the four sequences exhibit sign changes with the mean period of P = 2*Pi/phi steps.
When Q has a symmetry with respect to permutations and/or inversions of the imaginary axes, the four sequences become even more interdependent.
In this particular case Q = 2+j+k, and Q^n = a(n)+b(n)*(j+k), where b(n) is the sequence A190965. The first-order recurrence reduces to two-terms, namely a(n+1)=2*a(n)-2*b(n), b(n+1)=2*b(n)+a(n). This implies further a single-term, second order recurrence a(n+2)=4*a(n+1)-6*a(n), shared by both a(n) and b(n), but with different starting terms. The mean period of sign changes is P = 10.208598624... steps.
The following OEIS sequences can be also cast as quaternion powers:
Q = 1+i+j+k: Q^n = A128018(n)+A088138(n)*(i+j+k), P = 6.000,
Q = 1+j+k : Q^n = A087455(n)+A088137(n)*(j+k), P = 6.577071086...,
Q = 2+i+j+k: Q^n = A213421(n)+A168175(n)*(i+j+k), P = 8.803377735...

Crossrefs

Cf. A087455 (Inv. Bin. Transf.), A088137, A088138, A128018, A168175, A190965, A213421.

Programs

  • Magma
    [n le 2 select n else  4*Self(n-1)-6*Self(n-2): n in [1..40]]; // Vincenzo Librandi, Dec 22 2015
  • Mathematica
    LinearRecurrence[{4, -6}, {1, 2}, 30] (* Bruno Berselli, Dec 22 2015 *)
  • PARI
    \\ A simple function to generate quaternion powers:
    QuaternionToN(r, u, v, w, nmax) = {local (M); M = matrix(nmax+1, 4); M[1, 1]=1; for(n=2, nmax+1, M[n, 1]=r*M[n-1, 1]-u*M[n-1, 2]-v*M[n-1, 3]-w*M[n-1, 4]; M[n, 2]=u*M[n-1, 1]+r*M[n-1, 2]+w*M[n-1, 3]-v*M[n-1, 4]; M[n, 3]=v*M[n-1, 1]-w*M[n-1, 2]+r*M[n-1, 3]+u*M[n-1, 4]; M[n, 4]=w*M[n-1, 1]+v*M[n-1, 2]-u*M[n-1, 3]+r*M[n-1, 4]; ); return (M); }
    a=QuaternionToN(2, 0, 1, 1, 1000)[,1]; \\ Select the real parts
    
  • PARI
    Vec((1-2*x)/(1-4*x+6*x^2) + O(x^40)) \\ Colin Barker, Dec 21 2015
    

Formula

a(n)^2 + 2*A190965(n)^2 = 6^n.
From Colin Barker, Dec 21 2015: (Start)
a(n) = ((2-i*sqrt(2))^n+(2+i*sqrt(2))^n)/2, where i=sqrt(-1).
a(n) = 4*a(n-1) - 6*a(n-2) for n>1.
G.f.: (1-2*x) / (1-4*x+6*x^2). (End)

A379825 a(n) = [x^n] x/(12*x^2 - 6*x + 1).

Original entry on oeis.org

0, 1, 6, 24, 72, 144, 0, -1728, -10368, -41472, -124416, -248832, 0, 2985984, 17915904, 71663616, 214990848, 429981696, 0, -5159780352, -30958682112, -123834728448, -371504185344, -743008370688, 0, 8916100448256, 53496602689536, 213986410758144, 641959232274432
Offset: 0

Views

Author

Peter Luschny, Jan 04 2025

Keywords

Crossrefs

Programs

  • Maple
    w := sqrt(-3): a := n -> (w/6)*((3 - w)^n - (3 + w)^n):
    seq(simplify(a(n)), n = 0..28);
    # Alternative:
    a := proc(n) option remember; if n < 2 then n else 6*(a(n - 1) - 2*a(n - 2)) fi end:
    seq(a(n), n = 0..28);
  • Mathematica
    LinearRecurrence[{6,-12},{0,1},29] (* James C. McMahon, Jan 05 2025 *)

Formula

a(n) = n! * [x^n] exp(3*x)*sin(sqrt(3)*x)/sqrt(3).
a(n) = (w/6)*((3 - w)^n - (3 + w)^n) where w = sqrt(-3).
a(n) = 6*a(n - 1) - 12*a(n - 2) for n >= 2.
a(n) = 2^n*3^((n - 1)/2)*sin((Pi*n)/6).
a(n) = 2^(n-1)*A057083(n-1) = 2^(n-1)*3^((n-1)/2)*ChebyshevU(n-1, sqrt(3)/2) for n >= 1.
Showing 1-3 of 3 results.