A190958
a(n) = 2*a(n-1) - 10*a(n-2), with a(0) = 0, a(1) = 1.
Original entry on oeis.org
0, 1, 2, -6, -32, -4, 312, 664, -1792, -10224, -2528, 97184, 219648, -532544, -3261568, -1197696, 30220288, 72417536, -157367808, -1038910976, -504143872, 9380822016, 23803082752, -46202054656, -330434936832, -198849327104, 2906650714112, 7801794699264
Offset: 0
Sequences of the form a(n) = c*a(n-1) - d*a(n-2), with a(0)=0, a(1)=1:
c/d...1.......2.......3.......4.......5.......6.......7.......8.......9......10
-
I:=[0,1]; [n le 2 select I[n] else 2*Self(n-1)-10*Self(n-2): n in [1..30]]; // Vincenzo Librandi, Sep 17 2011
-
LinearRecurrence[{2,-10}, {0,1}, 50]
-
a(n)=([0,1; -10,2]^n*[0;1])[1,1] \\ Charles R Greathouse IV, Apr 08 2016
-
[lucas_number1(n,2,10) for n in (0..50)] # G. C. Greubel, Jun 10 2022
A266046
Real part of Q^n, where Q is the quaternion 2 + j + k.
Original entry on oeis.org
1, 2, 2, -4, -28, -88, -184, -208, 272, 2336, 7712, 16832, 21056, -16768, -193408, -673024, -1531648, -2088448, 836096, 15875072, 58483712, 138684416, 203835392, -16764928, -1290072064, -5059698688, -12498362368, -19635257344, -3550855168, 103608123392
Offset: 0
- Stanislav Sykora, Table of n, a(n) for n = 0..1000
- Beata Bajorska-Harapińska, Barbara Smoleń, Roman Wituła, On Quaternion Equivalents for Quasi-Fibonacci Numbers, Shortly Quaternaccis, Advances in Applied Clifford Algebras Vol. 29, No. 3 (2019), Article 54.
- Index entries for linear recurrences with constant coefficients, signature (4,-6).
-
[n le 2 select n else 4*Self(n-1)-6*Self(n-2): n in [1..40]]; // Vincenzo Librandi, Dec 22 2015
-
LinearRecurrence[{4, -6}, {1, 2}, 30] (* Bruno Berselli, Dec 22 2015 *)
-
\\ A simple function to generate quaternion powers:
QuaternionToN(r, u, v, w, nmax) = {local (M); M = matrix(nmax+1, 4); M[1, 1]=1; for(n=2, nmax+1, M[n, 1]=r*M[n-1, 1]-u*M[n-1, 2]-v*M[n-1, 3]-w*M[n-1, 4]; M[n, 2]=u*M[n-1, 1]+r*M[n-1, 2]+w*M[n-1, 3]-v*M[n-1, 4]; M[n, 3]=v*M[n-1, 1]-w*M[n-1, 2]+r*M[n-1, 3]+u*M[n-1, 4]; M[n, 4]=w*M[n-1, 1]+v*M[n-1, 2]-u*M[n-1, 3]+r*M[n-1, 4]; ); return (M); }
a=QuaternionToN(2, 0, 1, 1, 1000)[,1]; \\ Select the real parts
-
Vec((1-2*x)/(1-4*x+6*x^2) + O(x^40)) \\ Colin Barker, Dec 21 2015
A379825
a(n) = [x^n] x/(12*x^2 - 6*x + 1).
Original entry on oeis.org
0, 1, 6, 24, 72, 144, 0, -1728, -10368, -41472, -124416, -248832, 0, 2985984, 17915904, 71663616, 214990848, 429981696, 0, -5159780352, -30958682112, -123834728448, -371504185344, -743008370688, 0, 8916100448256, 53496602689536, 213986410758144, 641959232274432
Offset: 0
-
w := sqrt(-3): a := n -> (w/6)*((3 - w)^n - (3 + w)^n):
seq(simplify(a(n)), n = 0..28);
# Alternative:
a := proc(n) option remember; if n < 2 then n else 6*(a(n - 1) - 2*a(n - 2)) fi end:
seq(a(n), n = 0..28);
-
LinearRecurrence[{6,-12},{0,1},29] (* James C. McMahon, Jan 05 2025 *)
Showing 1-3 of 3 results.
Comments