cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A190958 a(n) = 2*a(n-1) - 10*a(n-2), with a(0) = 0, a(1) = 1.

Original entry on oeis.org

0, 1, 2, -6, -32, -4, 312, 664, -1792, -10224, -2528, 97184, 219648, -532544, -3261568, -1197696, 30220288, 72417536, -157367808, -1038910976, -504143872, 9380822016, 23803082752, -46202054656, -330434936832, -198849327104, 2906650714112, 7801794699264
Offset: 0

Views

Author

Keywords

Comments

For the difference equation a(n) = c*a(n-1) - d*a(n-2), with a(0) = 0, a(1) = 1, the solution is a(n) = d^((n-1)/2) * ChebyshevU(n-1, c/(2*sqrt(d))) and has the alternate form a(n) = ( ((c + sqrt(c^2 - 4*d))/2)^n - ((c - sqrt(c^2 - 4*d))/2)^n )/sqrt(c^2 - 4*d). In the case c^2 = 4*d then the solution is a(n) = n*d^((n-1)/2). The generating function is x/(1 - c*x + d^2) and the exponential generating function takes the form (2/sqrt(c^2 - 4*d))*exp(c*x/2)*sinh(sqrt(c^2 - 4*d)*x/2) for c^2 > 4*d, (2/sqrt(4*d - c^2))*exp(c*x/2)*sin(sqrt(4*d - c^2)*x/2) for 4*d > c^2, and x*exp(sqrt(d)*x) if c^2 = 4*d. - G. C. Greubel, Jun 10 2022

Crossrefs

Programs

  • Magma
    I:=[0,1]; [n le 2 select I[n] else 2*Self(n-1)-10*Self(n-2): n in [1..30]]; // Vincenzo Librandi, Sep 17 2011
    
  • Mathematica
    LinearRecurrence[{2,-10}, {0,1}, 50]
  • PARI
    a(n)=([0,1; -10,2]^n*[0;1])[1,1] \\ Charles R Greathouse IV, Apr 08 2016
    
  • SageMath
    [lucas_number1(n,2,10) for n in (0..50)] # G. C. Greubel, Jun 10 2022

Formula

G.f.: x / ( 1 - 2*x + 10*x^2 ). - R. J. Mathar, Jun 01 2011
E.g.f.: (1/3)*exp(x)*sin(3*x). - Franck Maminirina Ramaharo, Nov 13 2018
a(n) = 10^((n-1)/2) * ChebyshevU(n-1, 1/sqrt(10)). - G. C. Greubel, Jun 10 2022
a(n) = (1/3)*10^(n/2)*sin(n*arctan(3)) = Sum_{k=0..floor(n/2)} (-1)^k*3^(2*k)*binomial(n,2*k+1). - Gerry Martens, Oct 15 2022

A172250 Triangle, read by rows, given by [0,1,-1,0,0,0,0,0,0,0,...] DELTA [1,-1,1,0,0,0,0,0,0,0,...] where DELTA is the operator defined in A084938.

Original entry on oeis.org

1, 0, 1, 0, 1, 0, 0, 0, 2, -1, 0, 0, 1, 1, -1, 0, 0, 0, 3, -2, 0, 0, 0, 0, 1, 3, -4, 1, 0, 0, 0, 0, 4, -2, -2, 1, 0, 0, 0, 0, 1, 6, -9, 3, 0, 0, 0, 0, 0, 0, 5, 0, -9, 6, -1, 0, 0, 0, 0, 0, 1, 10, -15, 3, 3, -1, 0, 0, 0, 0, 0, 0, 6, 5, -24, 18, -4, 0, 0, 0, 0, 0, 0, 0, 1, 15, -20, -6, 18, -8, 1
Offset: 0

Views

Author

Philippe Deléham, Jan 29 2010

Keywords

Examples

			Triangle begins:
  1;
  0,  1;
  0,  1,  0;
  0,  0,  2, -1;
  0,  0,  1,  1, -1;
  0,  0,  0,  3, -2,  0;
  0,  0,  0,  1,  3, -4,  1;
  0,  0,  0,  0,  4, -2, -2,  1; ...
		

Crossrefs

Cf. A101950.

Formula

T(n,k) = T(n-1,k-1) + T(n-2,k-1) - T(n-2,k-2), T(0,0)=1, T(n,k) = 0 if k > n or if k < 0.
Sum_{k=0..n} T(n,k)*x^k = (-1)^n*A088139(n+1), A001607(n+1), A000007(n), A000012(n), A099087(n), A190960(n+1) for x = -2, -1, 0, 1, 2, 3 respectively. - Philippe Deléham, Feb 15 2012
G.f.: 1/(1-y*x+y*(y-1)*x^2). - Philippe Deléham, Feb 15 2012

A202603 Triangle T(n,k), read by rows, given by (1, 0, 0, 0, 0, 0, 0, 0, 0, 0, ...) DELTA (1, -1, 1, 0, 0, 0, 0, 0, 0, 0, 0, ...) where DELTA is the operator defined in A084938.

Original entry on oeis.org

1, 1, 1, 1, 1, 0, 1, 1, -1, -1, 1, 1, -2, -3, -1, 1, 1, -3, -5, -2, 0, 1, 1, -4, -7, -2, 2, 1, 1, 1, -5, -9, -1, 7, 5, 1, 1, 1, -6, -11, 1, 15, 12, 3, 0, 1, 1, -7, -13, 4, 26, 21, 3, -3, -1, 1, 1, -8, -15, 8, 40, 31, -3, -15, -7, -1
Offset: 0

Views

Author

Philippe Deléham, Dec 21 2011

Keywords

Comments

Mirror image of triangle in A129267.

Examples

			Triangle begins :
1
1, 1
1, 1, 0
1, 1, -1, -1
1, 1, -2, -3, -1
1, 1, -3, -5, -2, 0
1, 1, -4, -7, -2, 2, 1
1, 1, -5, -9, -1, 7, 5, 1
		

Crossrefs

Formula

T(n,k) = T(n-1,k) + T(n-1,k-1) - T(n-2,k-1) - T(n-2,l-2) with T(0,0)= T(1,0) = T(1,1) = 1 and T(n,k) = 0 if k<0 or if n
Sum_{k, 0<=k<=n} T(n,k)*x^k = A000012(n), A099087(n), A190960(n+1) for x = 0, 1, 2 respectively.
G.f.: 1/(1-(1+y)*x+(y+y^2)*x^2).
Showing 1-3 of 3 results.