cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A001607 a(n) = -a(n-1) - 2*a(n-2).

Original entry on oeis.org

0, 1, -1, -1, 3, -1, -5, 7, 3, -17, 11, 23, -45, -1, 91, -89, -93, 271, -85, -457, 627, 287, -1541, 967, 2115, -4049, -181, 8279, -7917, -8641, 24475, -7193, -41757, 56143, 27371, -139657, 84915, 194399, -364229, -24569, 753027, -703889
Offset: 0

Views

Author

Keywords

Comments

The sequences A001607, A077020, A107920, A167433, A169998 are all essentially the same except for signs.
Apart from the sign, this is an example of a sequence of Lehmer numbers. In this case, the two parameters, alpha and beta, are (1 +- i*sqrt(7))/2. Bilu, Hanrot, Voutier and Mignotte show that all terms of a Lehmer sequence a(n) have a primitive factor for n > 30. Note that for this sequence, a(30) = 24475 = 5*5*11*89 has no primitive factors. - T. D. Noe, Oct 29 2003

References

  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Apart from signs, same as A077020.
Cf. A172250.

Programs

  • Magma
    [n eq 1 select 0 else n eq 2 select 1 else -Self(n-1)-2*Self(n-2): n in [1..50]]; // Vincenzo Librandi, Aug 22 2011
    
  • Mathematica
    LinearRecurrence[{-1,-2},{0,1},60] (* Harvey P. Dale, Aug 21 2011 *)
  • PARI
    a(n)=if(n<0,0,polcoeff(x/(1+x+2*x^2)+x*O(x^n),n))
    
  • PARI
    a(n)=if(n<0,0,2*imag(((-1+quadgen(-28))/2)^n))
    
  • SageMath
    A001607=BinaryRecurrenceSequence(-1,-2,0,1)
    [A001607(n) for n in range(51)] # G. C. Greubel, Mar 24 2024

Formula

G.f.: x/(1+x+2*x^2).
a(n) = Sum_{k=0..n-1} (-1)^(n-k-1)*binomial(n-k-1, k)*2^k = -2/sqrt(7)*(-sqrt(2))^n*(sin(n*arctan(sqrt(7)))). - Vladeta Jovovic, Feb 05 2003
x/(x^2+x+2) = Sum_{n>=0} a(n)*(x/2)^n. - Benoit Cloitre, Mar 12 2002
4*2^n = A002249(n)^2 + 7*A001607(n)^2. See A077020, A077021.
a(n+1) = Sum_{k=0..n} A172250(n,k)*(-1)^k. - Philippe Deléham, Feb 15 2012
G.f.: x - 2*x^2 + 2*x^2/(G(0)+1) where G(k) = 1 + x/(1 - x/(x - 1/G(k+1) )); (recursively defined continued fraction). - Sergei N. Gladkovskii, Dec 16 2012
a(n) = 2^((n-1)/2)*ChebyshevU(n-1, -1/(2*sqrt(2))). - G. C. Greubel, Mar 24 2024
a(n) = (i*(((-1 - i*sqrt(7))/2)^n - ((-1 + i*sqrt(7))/2)^n))/sqrt(7). - Alan Michael Gómez Calderón, Jul 09 2024; after T. D. Noe, Oct 29 2003

A088139 a(n) = 2*a(n-1) - 6*a(n-2), a(0)=0, a(1)=1.

Original entry on oeis.org

0, 1, 2, -2, -16, -20, 56, 232, 128, -1136, -3040, 736, 19712, 35008, -48256, -306560, -323584, 1192192, 4325888, 1498624, -22958080, -54907904, 27932672, 385312768, 603029504, -1105817600, -5829812224, -5024718848, 24929435648, 80007184384
Offset: 0

Views

Author

Paul Barry, Sep 20 2003

Keywords

Crossrefs

Programs

  • GAP
    a:=[0,1];; for n in [3..30] do a[n]:=2*a[n-1]-6*a[n-2]; od; a; # Muniru A Asiru, Oct 23 2018
  • Magma
    I:=[0,1]; [n le 2 select I[n] else 2*Self(n-1) - 6*Self(n-2): n in [1..30]]; // G. C. Greubel, Oct 22 2018
    
  • Maple
    seq(coeff(series(x/(1-2*x+6*x^2),x,n+1), x, n), n = 0 .. 30); # Muniru A Asiru, Oct 23 2018
  • Mathematica
    Join[{a=0,b=1},Table[c=2*b-6*a;a=b;b=c,{n,100}]] (* Vladimir Joseph Stephan Orlovsky, Jan 17 2011*)
    TrigExpand@Table[(6^(n/2) Sin[n ArcTan[Sqrt[5]]])/Sqrt[5], {n, 0, 20}] (* or *)
    Table[Sum[(-5)^k Binomial[n, 2 k + 1], {k, 0, n/2}], {n, 0, 20}] (* Vladimir Reshetnikov, Sep 20 2016 *)
    LinearRecurrence[{2,-6},{0,1},40] (* Harvey P. Dale, Nov 22 2024 *)
  • PARI
    x='x+O('x^30); concat([0], Vec(x/(1-2*x+6*x^2))) \\ G. C. Greubel, Oct 22 2018
    
  • Sage
    [lucas_number1(n,2,6) for n in range(0, 30)] # Zerinvary Lajos, Apr 23 2009
    

Formula

G.f.: x/(1-2*x+6*x^2).
E.g.f.: exp(x)*sin(sqrt(5)*x)/sqrt(5).
a(n) = ((1+i*sqrt(5))^n-(1-i*sqrt(5))^n)/(2*i*sqrt(5)).
a(n) = Im{(1+i*sqrt(5))^n/sqrt(5)}.
a(n) = Sum_{k=0..floor(n/2)} C(n, 2k+1)(-5)^k.
a(n+1) = (-1)^n*Sum_{k, 0<=k<=n} A172250(n,k)*(-2)^k. - Philippe Deléham, Feb 15 2012
Showing 1-2 of 2 results.