Original entry on oeis.org
3, 5, 7, 3, 17, 11, 23, 89, 271, 457, 967, 4049, 181, 8641, 7193, 2603047, 68476319, 335257649, 5554901257, 31797598073, 23369856751, 77031318395801969, 3293187233103900007, 637758902554659731714245315207
Offset: 1
a(13)=181 because A077020(26)=181 is the 13th prime value found in that sequence; A001607(26)=-181.
A177693
Triangle, read by rows, T(n, k) = p(n)/(p(k)*p(n-k)), where p(n) = Product_{j=1..n} A001607(j).
Original entry on oeis.org
1, 1, 1, 1, -1, 1, 1, -1, -1, 1, 1, 3, 3, 3, 1, 1, -1, 3, 3, -1, 1, 1, -5, -5, 15, -5, -5, 1, 1, 7, 35, 35, 35, 35, 7, 1, 1, 3, -21, -105, 35, -105, -21, 3, 1, 1, -17, 51, -357, 595, 595, -357, 51, -17, 1, 1, 11, 187, -561, -1309, -6545, -1309, -561, 187, 11, 1
Offset: 0
Triangle begins as:
1;
1, 1;
1, -1, 1;
1, -1, -1, 1;
1, 3, 3, 3, 1;
1, -1, 3, 3, -1, 1;
1, -5, -5, 15, -5, -5, 1;
1, 7, 35, 35, 35, 35, 7, 1;
1, 3, -21, -105, 35, -105, -21, 3, 1;
1, -17, 51, -357, 595, 595, -357, 51, -17, 1;
1, 11, 187, -561, -1309, -6545, -1309, -561, 187, 11, 1;
- Advanced Number Theory, Harvey Cohn, Dover Books, 1963, Page 47ff.
-
A001607:=[n le 2 select n-1 else -Self(n-1)-2*Self(n-2): n in [1..100]];
p:= func< n | n eq 0 select 1 else (&*[A001607[j+1]: j in [1..n]]) >;
A177693:= func< n,k | p(n)/(p(k)*p(n-k)) >;
[A177693(n,k): k in [0..n], n in [0..12]]; // G. C. Greubel, Apr 08 2024
-
A001607:= LinearRecurrence[{-1,-2}, {0,1}, 100];
p[n_]:= Product[A001607[[i+1]], {i,n}];
T[n_,k_]:= p[n]/(p[k]*p[n-k]);
Table[T[n,k], {n,0,12}, {k,0,n}]//Flatten
-
A001607=BinaryRecurrenceSequence(-1,-2,0,1)
def p(n): return product(A001607(j) for j in range(1,n+1))
def A177693(n,k): return p(n)/(p(k)*p(n-k))
flatten([[A177693(n,k) for k in range(n+1)] for n in range(13)]) # G. C. Greubel, Apr 08 2024
Original entry on oeis.org
4, 6, 7, 8, 9, 10, 11, 15, 17, 19, 23, 25, 26, 29, 31, 47, 53, 65, 67, 71, 73, 113, 127, 199, 257, 349, 421, 433, 449, 691, 761, 823, 991, 1237, 1277, 1399, 1531, 1571, 3461, 3697, 4933, 6199, 7351
Offset: 1
A107920
Lucas and Lehmer numbers with parameters (1 +- sqrt(-7))/2.
Original entry on oeis.org
0, 1, 1, -1, -3, -1, 5, 7, -3, -17, -11, 23, 45, -1, -91, -89, 93, 271, 85, -457, -627, 287, 1541, 967, -2115, -4049, 181, 8279, 7917, -8641, -24475, -7193, 41757, 56143, -27371, -139657, -84915, 194399, 364229, -24569, -753027, -703889, 802165, 2209943, 605613, -3814273
Offset: 0
G.f. = x + x^2 - x^3 - 3*x^4 - x^5 + 5*x^6 + 7*x^7 - 3*x^8 - 17*x^9 - 11*x^10 + ...
- Alois P. Heinz, Table of n, a(n) for n = 0..1000
- Christian Ballot, Lucasnomial Fuss-Catalan Numbers and Related Divisibility Questions, J. Int. Seq., Vol. 21 (2018), Article 18.6.5.
- Paul Barry, On a Central Transform of Integer Sequences, arXiv:2004.04577 [math.CO], 2020.
- F. Beukers, The multiplicity of binary recurrences, Compositio Mathematica, Tome 40 (1980) no. 2 , p. 251-267. See Theorem 2 p. 259.
- Y. Bilu, G. Hanrot, P. M. Voutier and M. Mignotte, Existence of primitive divisors of Lucas and Lehmer numbers, [Research Report] RR-3792, INRIA. 1999, pp.41, HAL Id : inria-00072867.
- M. Mignotte, Propriétés arithmétiques des suites récurrentes, Besançon, 1988-1989, see p. 14. In French.
- Ronald Orozco López, Deformed Differential Calculus on Generalized Fibonacci Polynomials, arXiv:2211.04450 [math.CO], 2022.
- Eric Weisstein's World of Mathematics, Lehmer Number
- Wikipedia, Lucas Sequence
- Index entries for linear recurrences with constant coefficients, signature (1,-2).
- Index entries for sequences related to Chebyshev polynomials.
-
[0] cat [n le 2 select 1 else Self(n-1)-2*Self(n-2): n in [1..45]]; // Vincenzo Librandi, Nov 27 2015
-
a:= n-> (Matrix([[1,1],[ -2,0]])^n)[1,2]: seq(a(n), n=0..45); # Alois P. Heinz, Sep 03 2008
-
LinearRecurrence[{1, -2}, {0, 1}, 50] (* Vincenzo Librandi, Nov 27 2015 *)
a[ n_] := Im[ ((1 + Sqrt[-7]) / 2)^n // FullSimplify] 2 / Sqrt[7]; (* Michael Somos, Jan 19 2017 *)
a[n_] := If[n < 2, n, Hypergeometric2F1[1 - n/2, (1 - n)/2, 1 - n, 8]];
Table[a[n], {n, 0, 45}] (* Peter Luschny, Feb 23 2018 *)
-
{a(n) = imag(quadgen(-7)^n)};
-
my(x='x+O('x^100)); concat(0, Vec(x/(1-x+2*x^2))) \\ Altug Alkan, Dec 04 2015
-
[lucas_number1(n,1,2) for n in range(0, 46)] # Zerinvary Lajos, Apr 22 2009
A002249
a(n) = a(n-1) - 2*a(n-2) with a(0) = 2, a(1) = 1.
Original entry on oeis.org
2, 1, -3, -5, 1, 11, 9, -13, -31, -5, 57, 67, -47, -181, -87, 275, 449, -101, -999, -797, 1201, 2795, 393, -5197, -5983, 4411, 16377, 7555, -25199, -40309, 10089, 90707, 70529, -110885, -251943, -30173, 473713, 534059, -413367, -1481485
Offset: 0
We have a(2)-a(7) = a(5)-a(4) = a(6)+a(4) = a(11)-a(10) = a(12)+a(10)=10. Further the following relations: ((1+i*sqrt(7))/2)^4 + ((1-i*sqrt(7))/2)^4 = 1 and ((1+i*sqrt(7))/2)^8 + ((1-i*sqrt(7))/2)^8 = -31. - _Roman Witula_, Aug 21 2012
G.f. = 2 + x - 3*x^2 - 5*x^3 + x^4 + 11*x^5 + 9*x^6 - 13*x^7 - 31*x^8 + ...
From _Raphie Frank_, Dec 05 2015: (Start)
V_n(1, 2) = a(1*n) = ((a(1) + sqrt(-7))/2)^n + ((a(1) - sqrt(-7))/2)^n; a(1) = 1.
V_n(-3, 4) = a(2*n) = ((a(2) + sqrt(-7))/2)^n + ((a(2) - sqrt(-7))/2)^n; a(2) = -3.
V_n(-5, 8) = a(3*n) = ((a(3) + sqrt(-7))/2)^n + ((a(3) - sqrt(-7))/2)^n; a(3) = -5.
V_n(11, 32) = a(5*n) = ((a(5) + sqrt(-7))/2)^n + ((a(5) - sqrt(-7))/2)^n; a(5) = 11.
V_n(-181, 8192) = a(13*n) = ((a(13) + sqrt(-7))/2)^n + ((a(13) - sqrt(-7))/2)^n; a(13) = -181.
(End)
- T. D. Noe, Table of n, a(n) for n = 0..500
- Paul Barry, On a Central Transform of Integer Sequences, arXiv:2004.04577 [math.CO], 2020.
- Mathematics Stack Exchange, An exotic sequence, March 2014.
- Mihai Prunescu, On other two representations of the C-recursive integer sequences by terms in modular arithmetic, arXiv:2406.06436 [math.NT], 2024. See p. 18.
- Mihai Prunescu and Lorenzo Sauras-Altuzarra, On the representation of C-recursive integer sequences by arithmetic terms, arXiv:2405.04083 [math.LO], 2024. See p. 17.
- Mihai Prunescu and Joseph M. Shunia, On modular representations of C-recursive integer sequences, arXiv:2502.16928 [math.NT], 2025. See p. 6.
- Wikipedia, Lucas Sequence.
- Index entries for linear recurrences with constant coefficients, signature (1,-2).
-
I:=[2,1]; [n le 2 select I[n] else Self(n-1)-2*Self(n-2): n in [1..50]]; // Vincenzo Librandi, Nov 29 2015
-
A002249 := proc(n) option remember; >if n = 1 then 1 elif n = 2 then -3 else A002249(n-1>)-2*A002249(n-2); fi; end;
-
LinearRecurrence[{1,-2}, {2,1}, 50] (* Roman Witula, Aug 21 2012 *)
a[ n_] := 2^(n/2) ChebyshevT[ n, 8^(-1/2)] 2; (* Michael Somos, Jun 02 2014 *)
a[ n_] := 2^Min[0, n] SeriesCoefficient[ (2 - x) / (1 - x + 2 x^2), {x, 0, Abs @ n}]; (* Michael Somos, Jun 02 2014 *)
Table[2 Re[((1 + I Sqrt[7])/2)^n], {n, 0, 40}] (* Jean-François Alcover, Jun 02 2017 *)
-
{a(n) = if( n<0, 2^n * a(-n), polsym(2 - x + x^2, n)[n+1])}; /* Michael Somos, Jun 02 2014 */
-
{a(n) = 2 * real( ((1 + quadgen(-28)) / 2)^n )}; /* Michael Somos, Jun 02 2014 */
-
x='x+O('x^100); Vec((2-x)/(1-x+2*x^2)) \\ Altug Alkan, Dec 04 2015
-
from sympy import sqrt, re, I
def a(n): return 2*re(((1 + I*sqrt(7))/2)**n)
print([a(n) for n in range(40)]) # Indranil Ghosh, Jun 02 2017
-
[lucas_number2(n,1,2) for n in range(0, 40)] # Zerinvary Lajos, Apr 30 2009
A077020
a(n) is the unique odd positive solution x of 2^n = 7x^2+y^2.
Original entry on oeis.org
1, 1, 1, 3, 1, 5, 7, 3, 17, 11, 23, 45, 1, 91, 89, 93, 271, 85, 457, 627, 287, 1541, 967, 2115, 4049, 181, 8279, 7917, 8641, 24475, 7193, 41757, 56143, 27371, 139657, 84915, 194399, 364229, 24569, 753027, 703889, 802165, 2209943, 605613
Offset: 3
G.f. = x^3 + x^4 + x^5 + 3*x^6 + x^7 + 5*x^8 + 7*x^9 + 3*x^10 + 17*x^11 + ...
a(3)=1 since 2^3=8=7*1^2+1^2, a(6)=3 since 2^6=64=7*3^2+1^2.
- A. Engel, Problem-Solving Strategies. p. 126.
A078050
Expansion of (1-x)/(1+x+2*x^2).
Original entry on oeis.org
1, -2, 0, 4, -4, -4, 12, -4, -20, 28, 12, -68, 44, 92, -180, -4, 364, -356, -372, 1084, -340, -1828, 2508, 1148, -6164, 3868, 8460, -16196, -724, 33116, -31668, -34564, 97900, -28772, -167028, 224572, 109484, -558628, 339660, 777596, -1456916, -98276, 3012108, -2815556, -3208660, 8839772
Offset: 0
A078020
Expansion of (1-x)/(1-x+2*x^2).
Original entry on oeis.org
1, 0, -2, -2, 2, 6, 2, -10, -14, 6, 34, 22, -46, -90, 2, 182, 178, -186, -542, -170, 914, 1254, -574, -3082, -1934, 4230, 8098, -362, -16558, -15834, 17282, 48950, 14386, -83514, -112286, 54742, 279314, 169830, -388798, -728458, 49138, 1506054, 1407778, -1604330, -4419886, -1211226, 7628546
Offset: 0
-
a:=[1,0];; for n in [2..50] do a[n]:=a[n-1]-2*a[n-2]; od; a; # G. C. Greubel, Jun 29 2019
-
R:=PowerSeriesRing(Integers(), 50); Coefficients(R!( (1-x)/(1-x+2*x^2) )); // G. C. Greubel, Jun 29 2019
-
LinearRecurrence[{1,-2}, {1,0}, 50] (* or *) CoefficientList[Series[(1 - x)/(1-x+2*x^2), {x, 0, 50}], x] (* G. C. Greubel, Jun 29 2019 *)
-
Vec((1-x)/(1-x+2*x^2)+O(x^50)) \\ Charles R Greathouse IV, Sep 25 2012
-
((1-x)/(1-x+2*x^2)).series(x, 50).coefficients(x, sparse=False) # G. C. Greubel, Jun 29 2019
A087168
Expansion of (1 + 2*x)/(1 + 3*x + 4*x^2).
Original entry on oeis.org
1, -1, -1, 7, -17, 23, -1, -89, 271, -457, 287, 967, -4049, 8279, -8641, -7193, 56143, -139657, 194399, -24569, -703889, 2209943, -3814273, 2603047, 7447951, -32756041, 68476319, -74404793, -50690897, 449691863, -1146312001, 1640168551, -335257649, -5554901257
Offset: 0
Mario Catalani (mario.catalani(AT)unito.it), Aug 22 2003
G.f. = 1 - x - x^2 + 7*x^3 - 17*x^4 + 23*x^5 - x^6 - 89*x^7 + 271*x^8 + ...
-
A087168:= func< n | &+[ Binomial(n+k, 2*k)*(-2)^(n-k): k in [0..n] ] >;
[A087168(n): n in [0..35]];
-
CoefficientList[Series[(1+2x)/(1+3x+4x^2), {x, 0, 30}], x]
Table[-Det[Array[Sum[KroneckerDelta[#1, #2+q]*(q+3)^2, {q, -1, n-2}] &, {n-2, n-2}]], {n, 4, 50}] (* John M. Campbell, Dec 01 2011 *)
LinearRecurrence[{-3,-4},{1,-1},40] (* Harvey P. Dale, Apr 23 2014 *)
-
{a(n) = real( (-1 - quadgen(-7))^n )}; /* Michael Somos, Sep 19 2014 */
-
def A087168(n): return (-2)^(n-1)*(2*chebyshev_U(n-2, 3/4) -chebyshev_U(n-1, 3/4))
[A087168(n) for n in (0..50)] # G. C. Greubel, Jun 09 2022
A110512
Expansion of (1 + x)/(1 + x + 2x^2).
Original entry on oeis.org
1, 0, -2, 2, 2, -6, 2, 10, -14, -6, 34, -22, -46, 90, 2, -182, 178, 186, -542, 170, 914, -1254, -574, 3082, -1934, -4230, 8098, 362, -16558, 15834, 17282, -48950, 14386, 83514, -112286, -54742, 279314, -169830, -388798, 728458
Offset: 0
- R. Witula, On some applications of formulas for unimodular complex numbers, Jacek Skalmierski's Press, Gliwice 2011 (in Polish).
-
CoefficientList[Series[(1 + x)/(1 + x + 2*x^2), {x,0,50}], x] (* G. C. Greubel, Aug 29 2017 *)
LinearRecurrence[{-1,-2},{1,0},40] (* Harvey P. Dale, Dec 30 2024 *)
-
my(x='x+O('x^50)); Vec((1 + x)/(1 + x + 2*x^2)) \\ G. C. Greubel, Aug 29 2017
Showing 1-10 of 20 results.
Comments