cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 20 results. Next

A101088 Prime subsequence of A077020 (also A001607).

Original entry on oeis.org

3, 5, 7, 3, 17, 11, 23, 89, 271, 457, 967, 4049, 181, 8641, 7193, 2603047, 68476319, 335257649, 5554901257, 31797598073, 23369856751, 77031318395801969, 3293187233103900007, 637758902554659731714245315207
Offset: 1

Views

Author

Gerard P. Michon, Dec 01 2004

Keywords

Examples

			a(13)=181 because A077020(26)=181 is the 13th prime value found in that sequence; A001607(26)=-181.
		

A177693 Triangle, read by rows, T(n, k) = p(n)/(p(k)*p(n-k)), where p(n) = Product_{j=1..n} A001607(j).

Original entry on oeis.org

1, 1, 1, 1, -1, 1, 1, -1, -1, 1, 1, 3, 3, 3, 1, 1, -1, 3, 3, -1, 1, 1, -5, -5, 15, -5, -5, 1, 1, 7, 35, 35, 35, 35, 7, 1, 1, 3, -21, -105, 35, -105, -21, 3, 1, 1, -17, 51, -357, 595, 595, -357, 51, -17, 1, 1, 11, 187, -561, -1309, -6545, -1309, -561, 187, 11, 1
Offset: 0

Views

Author

Roger L. Bagula, May 11 2010

Keywords

Examples

			Triangle begins as:
  1;
  1,   1;
  1,  -1,   1;
  1,  -1,  -1,    1;
  1,   3,   3,    3,     1;
  1,  -1,   3,    3,    -1,     1;
  1,  -5,  -5,   15,    -5,    -5,     1;
  1,   7,  35,   35,    35,    35,     7,    1;
  1,   3, -21, -105,    35,  -105,   -21,    3,   1;
  1, -17,  51, -357,   595,   595,  -357,   51, -17,  1;
  1,  11, 187, -561, -1309, -6545, -1309, -561, 187, 11,  1;
		

References

  • Advanced Number Theory, Harvey Cohn, Dover Books, 1963, Page 47ff.

Crossrefs

Cf. A001607.

Programs

  • Magma
    A001607:=[n le 2 select n-1 else -Self(n-1)-2*Self(n-2): n in [1..100]];
    p:= func< n | n eq 0 select 1 else (&*[A001607[j+1]: j in [1..n]]) >;
    A177693:= func< n,k | p(n)/(p(k)*p(n-k)) >;
    [A177693(n,k): k in [0..n], n in [0..12]]; // G. C. Greubel, Apr 08 2024
    
  • Mathematica
    A001607:= LinearRecurrence[{-1,-2}, {0,1}, 100];
    p[n_]:= Product[A001607[[i+1]], {i,n}];
    T[n_,k_]:= p[n]/(p[k]*p[n-k]);
    Table[T[n,k], {n,0,12}, {k,0,n}]//Flatten
  • SageMath
    A001607=BinaryRecurrenceSequence(-1,-2,0,1)
    def p(n): return product(A001607(j) for j in range(1,n+1))
    def A177693(n,k): return p(n)/(p(k)*p(n-k))
    flatten([[A177693(n,k) for k in range(n+1)] for n in range(13)]) # G. C. Greubel, Apr 08 2024

Formula

T(n, k) = p(n)/(p(k)*p(n-k)), where p(n) = Product_{j=1..n} A001607(j) and p(0) = 1.
T(n, n-k) = T(n, k).

Extensions

Edited by G. C. Greubel, Apr 08 2024

A101087 Indices of prime values of A077020 (also A001607).

Original entry on oeis.org

4, 6, 7, 8, 9, 10, 11, 15, 17, 19, 23, 25, 26, 29, 31, 47, 53, 65, 67, 71, 73, 113, 127, 199, 257, 349, 421, 433, 449, 691, 761, 823, 991, 1237, 1277, 1399, 1531, 1571, 3461, 3697, 4933, 6199, 7351
Offset: 1

Views

Author

Gerard P. Michon, Dec 01 2004

Keywords

Comments

There are only 9 composite numbers in the entire sequence, namely: 4, 6, 8, 9, 10, 15, 25, 26 and 65.
If we are prepared to accept probable primes, then the sequence continues as follows: 9551, 9719, 11681, 12037, 14629, 14951, 19079, 20327, 22549, 30517, 51511, 52813, 60923, 73943, 79687, 91249, 115321, 117017, 169493, 172411, 174413, 237053, 285631, 318751, 327433. - David Broadhurst, May 23 2007

Crossrefs

Cf. A001607, A077020 (all values) and A101088 (prime values only). Similar to A001605 (Fibonacci primes), A000043 (Mersenne primes), A096650 (Pell primes), etc.

A107920 Lucas and Lehmer numbers with parameters (1 +- sqrt(-7))/2.

Original entry on oeis.org

0, 1, 1, -1, -3, -1, 5, 7, -3, -17, -11, 23, 45, -1, -91, -89, 93, 271, 85, -457, -627, 287, 1541, 967, -2115, -4049, 181, 8279, 7917, -8641, -24475, -7193, 41757, 56143, -27371, -139657, -84915, 194399, 364229, -24569, -753027, -703889, 802165, 2209943, 605613, -3814273
Offset: 0

Views

Author

Michael Somos, May 28 2005

Keywords

Comments

The sequences A001607, A077020, A107920, A167433, A169998 are all essentially the same except for signs.
This is an example of a sequence of Lehmer numbers. In this case, the two parameters, alpha and beta, are (1 +- i*sqrt(7))/2. Bilu, Hanrot, Voutier and Mignotte show that all terms of a Lehmer sequence a(n) have a primitive factor for n > 30. Note that for this sequence, a(30) = 24475 = 5*5*11*89 has no primitive factors. - T. D. Noe, Oct 29 2003
Row sums of Riordan array (1/(1+2*x^2), x/(1+2*x^2)). - Paul Barry, Sep 10 2005
Pisano period lengths: 1, 1, 8, 2, 24, 8, 21, 2, 24, 24, 10, 8, 168, 21, 24, 4, 144, 24, 360, 24, ... - R. J. Mathar, Aug 10 2012
This is the Lucas Sequence U_n(P, Q) = U_n(1, 2). V_n(1, 2) = A002249(n). - Raphie Frank, Dec 25 2013
Note that (A002249(n)/2)^2 + 7*(a(n)/2)^2 = 2^n for all n in N. This is a specific case of the Lucas sequence identity (V_n/2)^2 - D*(U_n/2)^2 = Q^n where V_n = (a^n + b^n), U_n = (a^n - b^n)/(a - b), Q = (a*b) = 2 and D = (a - b)^2 = -7; a = (1 + sqrt(-7))/2 and b = (1 - sqrt(-7))/2. - Raphie Frank, Nov 26 2015
For the special case where |a(n)| = 1, true for n if and only if n is in {1, 2, 3, 5, 13} = {A215795(n) + 1} = {A060728(n) - 2}, then, additionally, by the Lucas sequence identity (U_2n = U_n*V_n), we have (a(2n)/2)^2 + 7*(a(n)/2)^2 = 2^n. - Raphie Frank, Nov 26 2015

Examples

			G.f. = x + x^2 - x^3 - 3*x^4 - x^5 + 5*x^6 + 7*x^7 - 3*x^8 - 17*x^9 - 11*x^10 + ...
		

Crossrefs

Programs

  • Magma
    [0] cat [n le 2 select 1 else Self(n-1)-2*Self(n-2): n in [1..45]]; // Vincenzo Librandi, Nov 27 2015
  • Maple
    a:= n-> (Matrix([[1,1],[ -2,0]])^n)[1,2]: seq(a(n), n=0..45); # Alois P. Heinz, Sep 03 2008
  • Mathematica
    LinearRecurrence[{1, -2}, {0, 1}, 50] (* Vincenzo Librandi, Nov 27 2015 *)
    a[ n_] := Im[ ((1 + Sqrt[-7]) / 2)^n // FullSimplify] 2 / Sqrt[7]; (* Michael Somos, Jan 19 2017 *)
    a[n_] := If[n < 2, n, Hypergeometric2F1[1 - n/2, (1 - n)/2, 1 - n, 8]];
    Table[a[n], {n, 0, 45}] (* Peter Luschny, Feb 23 2018 *)
  • PARI
    {a(n) = imag(quadgen(-7)^n)};
    
  • PARI
    my(x='x+O('x^100)); concat(0, Vec(x/(1-x+2*x^2))) \\ Altug Alkan, Dec 04 2015
    
  • Sage
    [lucas_number1(n,1,2) for n in range(0, 46)] # Zerinvary Lajos, Apr 22 2009
    

Formula

G.f.: x / (1 - x + 2*x^2).
a(n) = a(n-1) - 2*a(n-2).
a(n) = -(-1)^n*A001607(n).
From Paul Barry, Sep 10 2005: (Start)
a(n+1) = Sum_{k=0..n} C((n+k)/2, k)*(-2)^((n-k)/2)*(1+(-1)^(n-k))/2.
a(n+1) = Sum_{k=0..floor(n/2)} C(n-k, k)*(-2)^k. (End)
a(n+1) = Sum_{k=0..n} A109466(n,k)*2^(n-k). - Philippe Deléham, Oct 26 2008
a(n) = ((1 - i*sqrt(7))^n - (1 + i*sqrt(7))^n)*i/(2^n*sqrt(7)), where i=sqrt(-1). - Bruno Berselli, Jul 01 2011
(a(2*(A060728(n)) - 4))^2 = (A002249(A060728(n) - 2))^2 = 2^(A060728(n)) - 7 = A227078(n), the Ramanujan-Nagell squares. - Raphie Frank, Dec 25 2013
a(n) = -a(-n) * 2^n for all n in Z. - Michael Somos, Jan 19 2017
G.f.: x / (1 - x / (1 + 2*x / (1 - 2*x))). - Michael Somos, Jan 19 2017
a(n) = S(n-1, 1/sqrt(2))*(sqrt(2))^(n-1), n >= 0, with the Chebyshev S polynomials (coefficients in A049310), and S(-1, x) = 0. - Wolfdieter Lang, Feb 22 2018
a(n) = hypergeom([1-n/2, (1-n)/2], [1-n], 8) for n >= 2. - Peter Luschny, Feb 23 2018

A002249 a(n) = a(n-1) - 2*a(n-2) with a(0) = 2, a(1) = 1.

Original entry on oeis.org

2, 1, -3, -5, 1, 11, 9, -13, -31, -5, 57, 67, -47, -181, -87, 275, 449, -101, -999, -797, 1201, 2795, 393, -5197, -5983, 4411, 16377, 7555, -25199, -40309, 10089, 90707, 70529, -110885, -251943, -30173, 473713, 534059, -413367, -1481485
Offset: 0

Views

Author

Keywords

Comments

4*2^n = A002249(n)^2 + 7*A001607(n)^2. See A077020, A077021.
Among presented initial elements of the sequence a(n), the maximal increasing or decreasing subsequences have length either 3 or 4. - Roman Witula, Aug 21 2012
This is the Lucas Sequence V_n(P, Q) = V_n(1, 2). U_n(1, 2) = A107920(n). - Raphie Frank, Dec 25 2013
The only numbers that occur more than once are 1=a(1)=a(4) and -5=a(3)=a(9). See Noam D. Elkies's posting in the Mathematics Stack Exchange link. - Robert Israel, Dec 21 2016

Examples

			We have a(2)-a(7) = a(5)-a(4) = a(6)+a(4) = a(11)-a(10) = a(12)+a(10)=10. Further the following relations: ((1+i*sqrt(7))/2)^4 + ((1-i*sqrt(7))/2)^4 = 1 and ((1+i*sqrt(7))/2)^8 + ((1-i*sqrt(7))/2)^8 = -31. - _Roman Witula_, Aug 21 2012
G.f. = 2 + x - 3*x^2 - 5*x^3 + x^4 + 11*x^5 + 9*x^6 - 13*x^7 - 31*x^8 + ...
From _Raphie Frank_, Dec 05 2015: (Start)
V_n(1, 2) = a(1*n) = ((a(1) + sqrt(-7))/2)^n + ((a(1) - sqrt(-7))/2)^n; a(1) = 1.
V_n(-3, 4) = a(2*n) = ((a(2) + sqrt(-7))/2)^n + ((a(2) - sqrt(-7))/2)^n; a(2) = -3.
V_n(-5, 8) = a(3*n) = ((a(3) + sqrt(-7))/2)^n + ((a(3) - sqrt(-7))/2)^n; a(3) = -5.
V_n(11, 32) = a(5*n) = ((a(5) + sqrt(-7))/2)^n + ((a(5) - sqrt(-7))/2)^n; a(5) = 11.
V_n(-181, 8192) = a(13*n) = ((a(13) + sqrt(-7))/2)^n + ((a(13) - sqrt(-7))/2)^n; a(13) = -181.
(End)
		

Crossrefs

Programs

  • Magma
    I:=[2,1]; [n le 2 select I[n] else Self(n-1)-2*Self(n-2): n in [1..50]]; // Vincenzo Librandi, Nov 29 2015
    
  • Maple
    A002249 := proc(n) option remember; >if n = 1 then 1 elif n = 2 then -3 else A002249(n-1>)-2*A002249(n-2); fi; end;
  • Mathematica
    LinearRecurrence[{1,-2}, {2,1}, 50] (* Roman Witula, Aug 21 2012 *)
    a[ n_] := 2^(n/2) ChebyshevT[ n, 8^(-1/2)] 2; (* Michael Somos, Jun 02 2014 *)
    a[ n_] := 2^Min[0, n] SeriesCoefficient[ (2 - x) / (1 - x + 2 x^2), {x, 0, Abs @ n}]; (* Michael Somos, Jun 02 2014 *)
    Table[2 Re[((1 + I Sqrt[7])/2)^n], {n, 0, 40}] (* Jean-François Alcover, Jun 02 2017 *)
  • PARI
    {a(n) = if( n<0, 2^n * a(-n), polsym(2 - x + x^2, n)[n+1])}; /* Michael Somos, Jun 02 2014 */
    
  • PARI
    {a(n) = 2 * real( ((1 + quadgen(-28)) / 2)^n )}; /* Michael Somos, Jun 02 2014 */
    
  • PARI
    x='x+O('x^100); Vec((2-x)/(1-x+2*x^2)) \\ Altug Alkan, Dec 04 2015
    
  • Python
    from sympy import sqrt, re, I
    def a(n): return 2*re(((1 + I*sqrt(7))/2)**n)
    print([a(n) for n in range(40)]) # Indranil Ghosh, Jun 02 2017
  • Sage
    [lucas_number2(n,1,2) for n in range(0, 40)] # Zerinvary Lajos, Apr 30 2009
    

Formula

G.f.: (2-x)/(1-x+2x^2). - Michael Somos, Oct 18 2002
a(n) = trace(A^n) for the square matrix A=[1, -2; 1, 0]. - Paul Barry, Sep 05 2003
a(n) = 2^((n+2)/2)*cos(-n*acot(sqrt(7)/7)). - Paul Barry, Sep 06 2003
a(n) = (-1)^n*(2*A110512(n) - A001607(n)) = ((1 + i*sqrt(7))/2)^n + ((1 - i*sqrt(7))/2)^n. - Roman Witula, Aug 21 2012
G.f.: G(0), where G(k) = 1 + 1/(1 - x*(7*k+1)/(x*(7*k+8) + 2/G(k+1))); (continued fraction). - Sergei N. Gladkovskii, Jun 03 2013
(a(A060728(n) - 2))^2 = (A107920(2*(A060728(n)) - 4))^2 = 2^(A060728(n)) - 7 = A227078(n), the Ramanujan-Nagell squares. - Raphie Frank, Dec 25 2013
a(n) = [x^n] ( (1 + x + sqrt(1 + 2*x - 7*x^2))/2 )^n for n >= 1. - Peter Bala, Jun 23 2015
a(n) = (A107920(n+1) + 2*A107920(n+2) - A107920(n+3))/2. - Raphie Frank, Nov 28 2015
V_n(P,Q) = a(k*n) = ((a(k) + sqrt(-7))/2)^n + ((a(k) - sqrt(-7))/2)^n for k is in {1, 2, 3, 5, 13} = (A060728(n) - 2), P is in {1, -3, -5, 11, -181} = a(k), and Q is in {2, 4, 8, 32, 8192} = 2^k = (2*A076046(n) + 2) = (A227078(n) - 7)/4. P^2 - 4*Q = -7. - Raphie Frank, Dec 05 2015
From Peter Bala, Nov 16 2022: (Start)
The Gauss congruences hold: a(n*p^k) == a(n*p^(k-1)) (mod p^k) for all positive integers n and k and all primes p.
A268924(n) == a(3^n) (mod 3^n). (End)

A077020 a(n) is the unique odd positive solution x of 2^n = 7x^2+y^2.

Original entry on oeis.org

1, 1, 1, 3, 1, 5, 7, 3, 17, 11, 23, 45, 1, 91, 89, 93, 271, 85, 457, 627, 287, 1541, 967, 2115, 4049, 181, 8279, 7917, 8641, 24475, 7193, 41757, 56143, 27371, 139657, 84915, 194399, 364229, 24569, 753027, 703889, 802165, 2209943, 605613
Offset: 3

Views

Author

Ed Pegg Jr, Oct 17 2002

Keywords

Comments

The sequences A001607, A077020, A107920, A167433, A169998 are all essentially the same except for signs.

Examples

			G.f. = x^3 + x^4 + x^5 + 3*x^6 + x^7 + 5*x^8 + 7*x^9 + 3*x^10 + 17*x^11 + ...
a(3)=1 since 2^3=8=7*1^2+1^2, a(6)=3 since 2^6=64=7*3^2+1^2.
		

References

  • A. Engel, Problem-Solving Strategies. p. 126.

Crossrefs

a(n)=abs(A001607(n-2)).
Cf. A077021.

Formula

a(n) = 2^(n-2) * a(4-n) for all n in Z. - Michael Somos, Jan 05 2017
0 = 8*a(n)^2 + 2*a(n+1)^2 - a(n+2)^2 - a(n+3)^2 for all n in Z. - Michael Somos, Jan 05 2017
2*a(n) + a(n+1) = a(n+2) or a(n+3). - Michael Somos, Jan 05 2017

A078050 Expansion of (1-x)/(1+x+2*x^2).

Original entry on oeis.org

1, -2, 0, 4, -4, -4, 12, -4, -20, 28, 12, -68, 44, 92, -180, -4, 364, -356, -372, 1084, -340, -1828, 2508, 1148, -6164, 3868, 8460, -16196, -724, 33116, -31668, -34564, 97900, -28772, -167028, 224572, 109484, -558628, 339660, 777596, -1456916, -98276, 3012108, -2815556, -3208660, 8839772
Offset: 0

Views

Author

N. J. A. Sloane, Nov 17 2002

Keywords

Comments

INVERTi transform of A005408, (2n + 1) = A078050 signed: (1, 2, 0, -4, -4, 4, 12, 4, -20, -28, ...) = left border of triangle A144106. - Gary W. Adamson, Sep 11 2008

Crossrefs

Cf. A005408, A144106. - Gary W. Adamson, Sep 11 2008
Cf. A208904.

Programs

Formula

a(n-1) = Sum_{k=1..n} (-1)^(n-k) * Sum_{i=0..n} binomial(k,n-i) * binomial(k+i-1, 2*k-1). - Vladimir Kruchinin, Mar 11 2013
a(n) = A001607(n+1)-A001607(n). - R. J. Mathar, Mar 19 2025

A078020 Expansion of (1-x)/(1-x+2*x^2).

Original entry on oeis.org

1, 0, -2, -2, 2, 6, 2, -10, -14, 6, 34, 22, -46, -90, 2, 182, 178, -186, -542, -170, 914, 1254, -574, -3082, -1934, 4230, 8098, -362, -16558, -15834, 17282, 48950, 14386, -83514, -112286, 54742, 279314, 169830, -388798, -728458, 49138, 1506054, 1407778, -1604330, -4419886, -1211226, 7628546
Offset: 0

Views

Author

N. J. A. Sloane, Nov 17 2002

Keywords

Comments

Equals the INVERT transform of [1, -1, -1, 1, 1, -1, -1, 1, 1, ...], i.e., 1 followed by repeats of (-1, -1, 1, 1, ...). - Gary W. Adamson, Sep 16 2008
Pisano period lengths: 1, 1, 8, 1, 24, 8, 21, 2, 24, 24, 10, 8, 168, 21, 24, 2, 144, 24, 360, 24, ... - R. J. Mathar, Aug 10 2012

Crossrefs

Programs

  • GAP
    a:=[1,0];; for n in [2..50] do a[n]:=a[n-1]-2*a[n-2]; od; a; # G. C. Greubel, Jun 29 2019
  • Magma
    R:=PowerSeriesRing(Integers(), 50); Coefficients(R!( (1-x)/(1-x+2*x^2) )); // G. C. Greubel, Jun 29 2019
    
  • Mathematica
    LinearRecurrence[{1,-2}, {1,0}, 50] (* or *) CoefficientList[Series[(1 - x)/(1-x+2*x^2), {x, 0, 50}], x] (* G. C. Greubel, Jun 29 2019 *)
  • PARI
    Vec((1-x)/(1-x+2*x^2)+O(x^50)) \\ Charles R Greathouse IV, Sep 25 2012
    
  • Sage
    ((1-x)/(1-x+2*x^2)).series(x, 50).coefficients(x, sparse=False) # G. C. Greubel, Jun 29 2019
    

Formula

a(n) = A107920(n+1) - A107920(n). - R. J. Mathar, Mar 14 2011
a(n) = (-1)^n*(A001607(n) + A001607(n-1)). - G. C. Greubel, Jun 29 2019

A087168 Expansion of (1 + 2*x)/(1 + 3*x + 4*x^2).

Original entry on oeis.org

1, -1, -1, 7, -17, 23, -1, -89, 271, -457, 287, 967, -4049, 8279, -8641, -7193, 56143, -139657, 194399, -24569, -703889, 2209943, -3814273, 2603047, 7447951, -32756041, 68476319, -74404793, -50690897, 449691863, -1146312001, 1640168551, -335257649, -5554901257
Offset: 0

Views

Author

Mario Catalani (mario.catalani(AT)unito.it), Aug 22 2003

Keywords

Comments

For positive n, a(n) equals 2^n times the permanent of the (2n) X (2n) tridiagonal matrix with 1/sqrt(2)'s along the main diagonal, and i's along the superdiagonal and the subdiagonal (i is the imaginary unit). - John M. Campbell, Jul 08 2011
For n > 3, equals -1 times the determinant of the (n-2) X (n-2) matrix with 2^2's along the superdiagonal, 3^2's along the main diagonal, 4^2's along the subdiagonal, etc., and 0's everywhere else. - John M. Campbell, Dec 01 2011

Examples

			G.f. = 1 - x - x^2 + 7*x^3 - 17*x^4 + 23*x^5 - x^6 - 89*x^7 + 271*x^8 + ...
		

Crossrefs

Programs

  • Magma
    A087168:= func< n | &+[ Binomial(n+k, 2*k)*(-2)^(n-k): k in [0..n] ] >;
    [A087168(n): n in [0..35]];
    
  • Mathematica
    CoefficientList[Series[(1+2x)/(1+3x+4x^2), {x, 0, 30}], x]
    Table[-Det[Array[Sum[KroneckerDelta[#1, #2+q]*(q+3)^2, {q, -1, n-2}] &, {n-2, n-2}]], {n, 4, 50}] (* John M. Campbell, Dec 01 2011 *)
    LinearRecurrence[{-3,-4},{1,-1},40] (* Harvey P. Dale, Apr 23 2014 *)
  • PARI
    {a(n) = real( (-1 - quadgen(-7))^n )}; /* Michael Somos, Sep 19 2014 */
    
  • SageMath
    def A087168(n): return (-2)^(n-1)*(2*chebyshev_U(n-2, 3/4) -chebyshev_U(n-1, 3/4))
    [A087168(n) for n in (0..50)] # G. C. Greubel, Jun 09 2022

Formula

G.f.: (1+2*x)/(1+3*x+4*x^2).
a(n) = -3*a(n-1) - 4*a(n-2); a(0)=1, a(1)=-1.
a(n) = Sum_{k=0..n} C(n+k,2*k)*(-2)^(n-k).
a(n) = -a(-1-n) * 2^(2*n+1) = A001607(2*n + 1) for all n in Z. - Michael Somos, Sep 19 2014
a(n) = (-2)^(n-1)*(2*ChebyshevU(n-2, 3/4) - ChebyshevU(n-1, 3/4)). - G. C. Greubel, Jun 09 2022

A110512 Expansion of (1 + x)/(1 + x + 2x^2).

Original entry on oeis.org

1, 0, -2, 2, 2, -6, 2, 10, -14, -6, 34, -22, -46, 90, 2, -182, 178, 186, -542, 170, 914, -1254, -574, 3082, -1934, -4230, 8098, 362, -16558, 15834, 17282, -48950, 14386, 83514, -112286, -54742, 279314, -169830, -388798, 728458
Offset: 0

Views

Author

Paul Barry, Jul 24 2005

Keywords

Comments

Row sums of number triangle A110511.
The sequences A110512 and A001607 are conjugated by one of the relations ((-1 + i*sqrt(7))/2)^n = a(n) + A001607(n)*(-1 + i*sqrt(7))/2 or ((-1 - i*sqrt(7))/2)^n = a(n) + A001607(n)*(-1 - i*sqrt(7))/2. These relations are connected with the Gauss sums; for example, if e := exp(i*2Pi/7) then e + e^2 + e^4 = (-1 + i*sqrt(7))/2 and e^3 + e^5 + e^6 = (-1 - i*sqrt(7))/2 -- for details see Witula's book. We also have a(n+1) = -2*A001607(n), which implies the Binet formula for a(n) (from the respective Binet formula for A001607(n) given in A001607), and A001607(n+1) = a(n) - A001607(n). - Roman Witula, Jul 27 2012
Pisano period lengths: 1, 1, 8, 1, 24, 8, 42, 1, 24, 24, 10, 8, 168, 42, 24, 2, 144, 24, 360, 24, ... - R. J. Mathar, Aug 10 2012

References

  • R. Witula, On some applications of formulas for unimodular complex numbers, Jacek Skalmierski's Press, Gliwice 2011 (in Polish).

Programs

  • Mathematica
    CoefficientList[Series[(1 + x)/(1 + x + 2*x^2), {x,0,50}], x] (* G. C. Greubel, Aug 29 2017 *)
    LinearRecurrence[{-1,-2},{1,0},40] (* Harvey P. Dale, Dec 30 2024 *)
  • PARI
    my(x='x+O('x^50)); Vec((1 + x)/(1 + x + 2*x^2)) \\ G. C. Greubel, Aug 29 2017

Formula

a(n) = Sum_{k=0..n} Sum_{j=0..n} (-1)^(n-j)*C(n, j)*(-2)^(j-k)*C(k, j-k).
a(n) = (-1)^n*A078020(n). - R. J. Mathar, Feb 04 2009
a(n+2) + a(n+1) + 2*a(n) = 0. - Roman Witula, Jul 27 2012
G.f.: 2 - x + 2*x^2 + 3*x/Q(0), where Q(k)= 1 - 1/(4^k - 2*x*16^k/(2*x*4^k + 1/(1 + 1/(2*4^k - 8*x*16^k/(4*x*4^k + 1/Q(k+1)))))); (continued fraction). - Sergei N. Gladkovskii, May 22 2013
From Ammar Khatab, Jul 11 2025: (Start)
a(n) = ((-sqrt(2))^(n+3)/sqrt(7)) * sin((n-1) * arctan(sqrt(7))).
x^n = A001607(n) * x + a(n) in Z[x]/(x^2 + x + 2).
a(n) = -2 * A001607(n-1), for n > 0. (End)
Showing 1-10 of 20 results. Next